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CHAPTER

ONE

INTRODUCTION

PyBLP is a Python 3 implementation of routines for estimating the demand for differentiated products with BLP-type
random coefficients logit models. This package was created by Jeff Gortmaker in collaboration with Chris Conlon.

Development of the package has been guided by the work of many researchers and practitioners. For a full list of
references, including the original work of Berry, Levinsohn, and Pakes (1995), refer to the references section of the
documentation.

1.1 Citation

If you use PyBLP in your research, we ask that you also cite Conlon and Gortmaker (2020), which describes the
advances implemented in the package.

@article{PyBLP,
author = {Conlon, Christopher and Gortmaker, Jeff},
title = {Best practices for differentiated products demand estimation with {PyBLP}

→˓},
journal = {The RAND Journal of Economics},
volume = {51},
number = {4},
pages = {1108-1161},
doi = {https://doi.org/10.1111/1756-2171.12352},
url = {https://onlinelibrary.wiley.com/doi/abs/10.1111/1756-2171.12352},
eprint = {https://onlinelibrary.wiley.com/doi/pdf/10.1111/1756-2171.12352},
year = {2020}

}

If you use PyBLP’s micro moments functionality, we ask that you also cite Conlon and Gortmaker (2023), which
describes the standardized framework implemented by PyBLP for incorporating micro data into BLP-style estimation.

@misc{MicroPyBLP,
author = {Conlon, Christopher and Gortmaker, Jeff},
title = {Incorporating micro data into differentiated products demand estimation

→˓with {PyBLP}},
note = {Working paper},
year = {2023}

}
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https://jeffgortmaker.com/
https://chrisconlon.github.io/
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https://pyblp.readthedocs.io/en/stable/references.html
https://jeffgortmaker.com/files/pyblp.pdf
https://jeffgortmaker.com/files/micro.pdf
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1.2 Installation

The PyBLP package has been tested on Python versions 3.6 through 3.9. The SciPy instructions for installing related
packages is a good guide for how to install a scientific Python environment. A good choice is the Anaconda Distri-
bution, since it comes packaged with the following PyBLP dependencies: NumPy, SciPy, SymPy, and Patsy. For
absorption of high dimension fixed effects, PyBLP also depends on its companion package PyHDFE, which will be
installed when PyBLP is installed.

However, PyBLP may not work with old versions of its dependencies. You can update PyBLP’s Anaconda dependen-
cies with:

conda update numpy scipy sympy patsy

You can update PyHDFE with:

pip install --upgrade pyhdfe

You can install the current release of PyBLP with pip:

pip install pyblp

You can upgrade to a newer release with the --upgrade flag:

pip install --upgrade pyblp

If you lack permissions, you can install PyBLP in your user directory with the --user flag:

pip install --user pyblp

Alternatively, you can download a wheel or source archive from PyPI. You can find the latest development code on
GitHub and the latest development documentation here.

1.3 Other Languages

Once installed, PyBLP can be incorporated into projects written in many other languages with the help of various tools
that enable interoperability with Python.

For example, the reticulate package makes interacting with PyBLP in R straightforward (when supported, Python
objects can be converted to their R counterparts with the py_to_r function, which needs to be used manually because
we set convert=FALSE to get rid of errors about trying to automatically convert unsupported objects):

library(reticulate)
pyblp <- import("pyblp", convert=FALSE)
pyblp$options$flush_output <- TRUE

Similarly, PyCall can be used to incorporate PyBLP into a Julia workflow:

using PyCall
pyblp = pyimport("pyblp")

The py command serves a similar purpose in MATLAB:

py.pyblp

4 Chapter 1. Introduction

https://www.python.org/downloads/
https://scipy.org/install/
https://www.anaconda.com/download
https://www.anaconda.com/download
https://numpy.org/
https://scipy.org/
https://www.sympy.org/en/index.html
https://patsy.readthedocs.io/en/latest/
https://github.com/jeffgortmaker/pyhdfe
https://pip.pypa.io/en/latest/
https://pypi.org/project/pyblp/
https://github.com/jeffgortmaker/pyblp/
https://pyblp.readthedocs.io/en/latest/
https://github.com/rstudio/reticulate
https://github.com/JuliaPy/PyCall.jl
https://www.mathworks.com/help/matlab/call-python-libraries.html
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1.4 Features

• R-style formula interface

• Bertrand-Nash supply-side moments

• Multiple equation GMM

• Demographic interactions

• Product-specific demographics

• Consumer-specific product availability

• Flexible micro moments that can match statistics based on survey data

• Support for micro moments based on second choice data

• Support for optimal micro moments that match micro data scores

• Fixed effect absorption

• Nonlinear functions of product characteristics

• Concentrating out linear parameters

• Flexible random coefficient distributions

• Parameter bounds and constraints

• Random coefficients nested logit (RCNL)

• Approximation to the pure characteristics model

• Varying nesting parameters across groups

• Logit and nested logit benchmarks

• Classic BLP instruments

• Differentiation instruments

• Optimal instruments

• Covariance restrictions

• Adjustments for simulation error

• Tests of overidentifying and model restrictions

• Parametric boostrapping post-estimation outputs

• Elasticities and diversion ratios

• Marginal costs and markups

• Passthrough calculations

• Profits and consumer surplus

• Newton and fixed point methods for computing pricing equilibria

• Merger simulation

• Custom counterfactual simulation

• Synthetic data construction

• SciPy or Artleys Knitro optimization

1.4. Features 5
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• Fixed point acceleration

• Monte Carlo, quasi-random sequences, quadrature, and sparse grids

• Importance sampling

• Custom optimization and iteration routines

• Robust and clustered errors

• Linear or log-linear marginal costs

• Partial ownership matrices

• Analytic gradients

• Finite difference Hessians

• Market-by-market parallelization

• Extended floating point precision

• Robust error handling

1.5 Bugs and Requests

Please use the GitHub issue tracker to submit bugs or to request features.

6 Chapter 1. Introduction
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CHAPTER

TWO

NOTATION

The notation in PyBLP is a customized amalgamation of the notation employed by Berry, Levinsohn, and Pakes (1995),
Nevo (2000a), Morrow and Skerlos (2011), Grigolon and Verboven (2014), and others.

2.1 Indices

Index Description
𝑗 Products
𝑡 Markets
𝑖 Agents/individuals
𝑓 Firms
ℎ Nests
𝑐 Clusters
𝑚 Micro moments

2.2 Dimensions/Sets

Dimension/Set Description
𝑇 Markets
𝑁 Products across all markets
𝐹 Firms across all markets
𝐼 Agents across all markets
𝐽𝑡 Products in market 𝑡
𝐹𝑡 Firms in market 𝑡
𝐽𝑓𝑡 Products produced by firm 𝑓 in market 𝑡
𝐼𝑡 Agents in market 𝑡
𝐾1 Demand-side linear product characteristics
𝐾ex

1 Exogenous demand-side linear product characteristics
𝐾en

1 Endogenous demand-side linear product characteristics
𝐾2 Demand-side nonlinear product characteristics
𝐾3 Supply-side product characteristics
𝐾ex

3 Exogenous supply-side product characteristics
𝐾en

3 Endogenous supply-side product characteristics
𝐷 Demographic variables
𝑀𝐷 Demand-side instruments

Continued on next page
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Table 1 – continued from previous page
Dimension/Set Description
𝑀𝑆 Supply-side instruments
𝑀𝐶 Covariance instruments
𝑀𝑀 Micro moments
𝑇𝑚 Markets over which micro moment 𝑚 is averaged
𝑇𝑚𝑛 Markets over which micro moments 𝑚 and 𝑛 are both averaged
𝑁𝑚 Observations underlying observed micro moment value 𝑚.
𝑀 All moments
𝐸𝐷 Absorbed dimensions of demand-side fixed effects
𝐸𝑆 Absorbed dimensions of supply-side fixed effects
𝐻 Nesting groups
𝐽ℎ𝑡 Products in nesting group ℎ and market 𝑡
𝐶 Clusters
𝐽𝑐𝑡 Products in cluster 𝑐 and market 𝑡

2.3 Matrices, Vectors, and Scalars

Symbol Dimensions Description
𝑋1 𝑁 ×𝐾1 Demand-side linear product characteristics
𝑋ex

1 𝑁 ×𝐾ex
1 Exogenous demand-side linear product characteristics

𝑋en
1 𝑁 ×𝐾en

1 Endogenous demand-side linear product characteristics
𝑋2 𝑁 ×𝐾2 Demand-side Nonlinear product characteristics
𝑋3 𝑁 ×𝐾3 Supply-side product characteristics
𝑋ex

3 𝑁 ×𝐾ex
3 Exogenous supply-side product characteristics

𝑋en
3 𝑁 ×𝐾en

3 Endogenous supply-side product characteristics
𝜉 𝑁 × 1 Unobserved demand-side product characteristics
𝜔 𝑁 × 1 Unobserved supply-side product characteristics
𝑝 𝑁 × 1 Prices
𝑠 (𝑠𝑗𝑡) 𝑁 × 1 Market shares
𝑠 (𝑠ℎ𝑡) 𝐻 × 1 Group shares in a market 𝑡
𝑠 (𝑠𝑖𝑗𝑡) 𝑁 × 𝐼𝑡 Choice probabilities in a market 𝑡
𝑐 𝑁 × 1 Marginal costs
𝑐 𝑁 × 1 Linear or log-linear marginal costs, 𝑐 or log 𝑐
𝜂 𝑁 × 1 Markup term from the BLP-markup equation
𝜁 𝑁 × 1 Markup term from the 𝜁-markup equation
H 𝐽𝑡 × 𝐽𝑡 Ownership or product holdings matrix in market 𝑡
𝜅 𝐹𝑡 × 𝐹𝑡 Cooperation matrix in market 𝑡
∆ 𝐽𝑡 × 𝐽𝑡 Intra-firm matrix of (negative, transposed) demand derivatives in market 𝑡
Λ 𝐽𝑡 × 𝐽𝑡 Diagonal matrix used to decompose 𝜂 and 𝜁 in market 𝑡
Γ 𝐽𝑡 × 𝐽𝑡 Another matrix used to decompose 𝜂 and 𝜁 in market 𝑡
𝑑 𝐼𝑡 ×𝐷 Observed agent characteristics called demographics in market 𝑡
𝜈 𝐼𝑡 ×𝐾2 Unobserved agent characteristics called integration nodes in market 𝑡
𝑎 𝐼𝑡 × 𝐽𝑡 Agent-specific product availability in market 𝑡
𝑤 𝐼𝑡 × 1 Integration weights in market 𝑡
𝛿 𝑁 × 1 Mean utility
𝜇 𝐽𝑡 × 𝐼𝑡 Agent-specific portion of utility in market 𝑡
𝜖 𝑁 × 1 Type I Extreme Value idiosyncratic preferences
𝜖 (𝜖𝑖𝑗𝑡) 𝑁 × 1 Type I Extreme Value term used to decompose 𝜖

Continued on next page
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Table 2 – continued from previous page
Symbol Dimensions Description
𝜖 (𝜖𝑖ℎ𝑡) 𝑁 × 1 Group-specific term used to decompose 𝜖
𝑈 𝐽𝑡 × 𝐼𝑡 Indirect utilities
𝑉 (𝑉𝑖𝑗𝑡) 𝐽𝑡 × 𝐼𝑡 Indirect utilities minus 𝜖
𝑉 (𝑉𝑖ℎ𝑡) 𝐽𝑡 × 𝐼𝑡 Inclusive value of a nesting group
𝜋 (𝜋𝑗𝑡) 𝑁 × 1 Population-normalized gross expected profits
𝜋 (𝜋𝑓𝑡) 𝐹𝑡 × 1 Population-normalized gross expected profits of a firm in market 𝑡
𝛽 𝐾1 × 1 Demand-side linear parameters
𝛽ex 𝐾ex

1 × 1 Parameters in 𝛽 on exogenous product characteristics
𝛼 𝐾en

1 × 1 Parameters in 𝛽 on endogenous product characteristics
Σ 𝐾2 ×𝐾2 Cholesky root of the covariance matrix for unobserved taste heterogeneity
Π 𝐾2 ×𝐷 Parameters that measures how agent tastes vary with demographics
𝜌 𝐻 × 1 Parameters that measures within nesting group correlation
𝛾 𝐾3 × 1 Supply-side linear parameters
𝛾ex 𝐾ex

3 × 1 Parameters in 𝛾 on exogenous product characteristics
𝛾en 𝐾en

3 × 1 Parameters in 𝛾 on endogenous product characteristics
𝜃 𝑃 × 1 Parameters
𝑍𝐷 𝑁 ×𝑀𝐷 Demand-side instruments
𝑍𝑆 𝑁 ×𝑀𝑆 Supply-side instruments
𝑍𝐶 𝑁 ×𝑀𝐶 Covariance instruments
𝑊 𝑀 ×𝑀 Weighting matrix
𝑆 𝑀 ×𝑀 Moment covariances
𝑞 1× 1 Objective value
𝑔𝐷 𝑁 ×𝑀𝐷 Demand-side moments
𝑔𝑆 𝑁 ×𝑀𝑆 Supply-side moments
𝑔𝐶 𝑁 ×𝑀𝐶 Covariance moments
𝑔𝑀 𝐼 ×𝑀𝑀 Micro moments
𝑔 (𝑔𝑗𝑡) 𝑁 × (𝑀𝐷 +𝑀𝑆 +𝑀𝐶) Demand-side, supply-side, and covariance moments
𝑔 (𝑔𝑐) 𝐶 × (𝑀𝐷 +𝑀𝑆 +𝑀𝐶) Clustered demand-side, supply-side, and covariance moments
𝑔𝐷 𝑀𝐷 × 1 Averaged demand-side moments
𝑔𝑆 𝑀𝑆 × 1 Averaged supply-side moments
𝑔𝐶 𝑀𝐶 × 1 Averaged covariance moments
𝑔𝑀 𝑀𝑀 × 1 Averaged micro moments
𝑔 𝑀 × 1 Averaged moments
�̄� 𝑀 × 𝑃 Jacobian of the averaged moments with respect to 𝜃
𝜀 𝐽𝑡 × 𝐽𝑡 Elasticities of demand in market 𝑡
D 𝐽𝑡 × 𝐽𝑡 Diversion ratios in market 𝑡
D̄ 𝐽𝑡 × 𝐽𝑡 Long-run diversion ratios in market 𝑡
M 𝑁 × 1 Markups
E 1× 1 Aggregate elasticity of demand of a market
CS 1× 1 Population-normalized consumer surplus of a market
HHI 1× 1 Herfindahl-Hirschman Index of a market

2.3. Matrices, Vectors, and Scalars 9
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CHAPTER

THREE

BACKGROUND

The following sections provide a very brief overview of the BLP model and how it is estimated. This goal is to
concisely introduce the notation and terminology used throughout the rest of the documentation. For a more in-depth
overview, refer to Conlon and Gortmaker (2020).

3.1 The Model

There are 𝑡 = 1, 2, . . . , 𝑇 markets, each with 𝑗 = 1, 2, . . . , 𝐽𝑡 products produced by 𝑓 = 1, 2, . . . , 𝐹𝑡 firms, for a total
of 𝑁 products across all markets. There are 𝑖 = 1, 2, . . . , 𝐼𝑡 individuals/agents who choose among the 𝐽𝑡 products and
an outside good 𝑗 = 0. These numbers also represent sets. For example, 𝐽𝑡 = {1, 2, . . . , 𝐽𝑡}.

3.1.1 Demand

Observed demand-side product characteristics are contained in the 𝑁×𝐾1 matrix of linear characteristics, 𝑋1, and the
𝑁 ×𝐾2 matrix of nonlinear characteristics, 𝑋2, which is typically a subset of 𝑋1. Unobserved demand-side product
characteristics, 𝜉, are a 𝑁 × 1 vector.

In market 𝑡, observed agent characteristics are a 𝐼𝑡 ×𝐷 matrix called demographics, 𝑑. Unobserved agent character-
istics are a 𝐼𝑡 ×𝐾2 matrix, 𝜈.

The indirect utility of agent 𝑖 from purchasing product 𝑗 in market 𝑡 is

𝑈𝑖𝑗𝑡 = 𝛿𝑗𝑡 + 𝜇𝑖𝑗𝑡⏟  ⏞  
𝑉𝑖𝑗𝑡

+𝜖𝑖𝑗𝑡,
(3.1)

in which the mean utility is, in vector-matrix form,

𝛿 = 𝑋en
1 𝛼+𝑋ex

1 𝛽ex⏟  ⏞  
𝑋1𝛽

+𝜉.
(3.2)

The 𝐾1 × 1 vector of demand-side linear parameters, 𝛽, is partitioned into two components: 𝛼 is a 𝐾en
1 × 1 vector of

parameters on the 𝑁 ×𝐾en
1 submatrix of endogenous characteristics, 𝑋en

1 , and 𝛽ex is a 𝐾ex
1 × 1 vector of parameters

on the 𝑁 ×𝐾ex
1 submatrix of exogenous characteristics, 𝑋ex

1 . Usually, 𝑋en
1 = 𝑝, prices, so 𝛼 is simply a scalar.

The agent-specific portion of utility in a single market is, in vector-matrix form,

𝜇 = 𝑋2(Σ𝜈
′ +Π𝑑′). (3.3)

The model incorporates both observable (demographics) and unobservable taste heterogeneity though random coeffi-
cients. For the unobserved heterogeneity, we let 𝜈 denote independent draws from the standard normal distribution.
These are scaled by a 𝐾2 ×𝐾2 lower-triangular matrix Σ, which denotes the Cholesky root of the covariance matrix
for unobserved taste heterogeneity. The 𝐾2 ×𝐷 matrix Π measures how agent tastes vary with demographics.

11
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In the above expression, random coefficients are assumed to be normally distributed, but this expression supports
all elliptical distributions. To incorporate one or more lognormal random coefficients, the associated columns in the
parenthesized expression can be exponentiated before being pre-multiplied by 𝑋2. For example, this allows for the
coefficient on price to be lognormal so that demand slopes down for all agents. For lognormal random coefficients, a
constant column is typically included in 𝑑 so that its coefficients in Π parametrize the means of the logs of the random
coefficients. More generally, all log-elliptical distributions are supported. A logit link function is also supported.

Random idiosyncratic preferences, 𝜖𝑖𝑗𝑡, are assumed to be Type I Extreme Value, so that conditional on the het-
erogeneous coefficients, market shares follow the well-known logit form. Aggregate market shares are obtained by
integrating over the distribution of individual heterogeneity. They are approximated with Monte Carlo integration or
quadrature rules defined by the 𝐼𝑡 ×𝐾2 matrix of integration nodes, 𝜈, and an 𝐼𝑡 × 1 vector of integration weights, 𝑤:

𝑠𝑗𝑡 ≈
∑︁
𝑖∈𝐼𝑡

𝑤𝑖𝑡𝑠𝑖𝑗𝑡, (3.4)

where the probability that agent 𝑖 chooses product 𝑗 in market 𝑡 is

𝑠𝑖𝑗𝑡 =
exp𝑉𝑖𝑗𝑡

1 +
∑︀

𝑘∈𝐽𝑡
exp𝑉𝑖𝑘𝑡

. (3.5)

There is a one in the denominator because the utility of the outside good is normalized to 𝑈𝑖0𝑡 = 0. The scale of utility
is normalized by the variance of 𝜖𝑖𝑗𝑡.

3.1.2 Supply

Observed supply-side product characteristics are contained in the 𝑁 ×𝐾3 matrix of supply-side characteristics, 𝑋3.
Prices cannot be supply-side characteristics, but non-price product characteristics often overlap with the demand-side
characteristics in 𝑋1 and 𝑋2. Unobserved supply-side product characteristics, 𝜔, are a 𝑁 × 1 vector.

Firm 𝑓 chooses prices in market 𝑡 to maximize the profits of its products 𝐽𝑓𝑡 ⊂ 𝐽𝑡:

𝜋𝑓𝑡 =
∑︁
𝑗∈𝐽𝑓𝑡

(𝑝𝑗𝑡 − 𝑐𝑗𝑡)𝑠𝑗𝑡. (3.6)

In a single market, the corresponding multi-product differentiated Bertrand first order conditions are, in vector-matrix
form,

𝑝− 𝑐 = ∆−1𝑠⏟  ⏞  
𝜂

, (3.7)

where the multi-product Bertrand markup 𝜂 depends on ∆, a 𝐽𝑡×𝐽𝑡 matrix of intra-firm (negative, transposed) demand
derivatives:

∆ = −H ⊙ 𝜕𝑠

𝜕𝑝

′
. (3.8)

Here, H denotes the market-level ownership or product holdings matrix in the market, where H𝑗𝑘 is typically 1 if the
same firm produces products 𝑗 and 𝑘, and 0 otherwise.

To include a supply side, we must specify a functional form for marginal costs:

𝑐 = 𝑓(𝑐) = 𝑋3𝛾 + 𝜔. (3.9)

The most common choices are 𝑓(𝑐) = 𝑐 and 𝑓(𝑐) = log(𝑐).

12 Chapter 3. Background
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3.2 Estimation

A demand side is always estimated but including a supply side is optional. With only a demand side, there are three
sets of parameters to be estimated: 𝛽 (which may include 𝛼), Σ and Π. With a supply side, there is also 𝛾. The linear
parameters, 𝛽 and 𝛾, are typically concentrated out of the problem. The exception is 𝛼, which cannot be concentrated
out when there is a supply side because it is needed to compute demand derivatives and hence marginal costs. Linear
parameters that are not concentrated out along with unknown nonlinear parameters in Σ and Π are collectively denoted
𝜃.

The GMM problem is

min
𝜃

𝑞(𝜃) = 𝑔(𝜃)′𝑊𝑔(𝜃), (3.10)

in which 𝑞(𝜃) is the GMM objective. By default, PyBLP scales this value by 𝑁 so that objectives across different
problem sizes are comparable. This behavior can be disabled. In some of the BLP literature and in earlier versions of
this package, the objective was scaled by 𝑁2.

Here, 𝑊 is a 𝑀 ×𝑀 weighting matrix and 𝑔 is a 𝑀 × 1 vector of averaged demand- and supply-side moments:

𝑔 =

[︂
𝑔𝐷
𝑔𝑆

]︂
=

1

𝑁

[︂∑︀
𝑗,𝑡 𝑍

′
𝐷,𝑗𝑡𝜉𝑗𝑡∑︀

𝑗,𝑡 𝑍
′
𝑆,𝑗𝑡𝜔𝑗𝑡

]︂
(3.11)

where 𝑍𝐷 and 𝑍𝑆 are 𝑁 ×𝑀𝐷 and 𝑁 ×𝑀𝑆 matrices of demand- and supply-side instruments.

The vector 𝑔 contains sample analogues of the demand- and supply-side moment conditions 𝐸[𝑔𝐷,𝑗𝑡] = 𝐸[𝑔𝑆,𝑗𝑡] = 0
where [︀

𝑔𝐷,𝑗𝑡 𝑔𝑆,𝑗𝑡
]︀
=
[︀
𝜉𝑗𝑡𝑍𝐷,𝑗𝑡 𝜔𝑗𝑡𝑍𝑆,𝑗𝑡

]︀
. (3.12)

In each GMM stage, a nonlinear optimizer finds the 𝜃 that minimizes the GMM objective value 𝑞(𝜃).

3.2.1 The Objective

Given a 𝜃, the first step to computing the objective 𝑞(𝜃) is to compute 𝛿(𝜃) in each market with the following standard
contraction:

𝛿𝑗𝑡 ← 𝛿𝑗𝑡 + log 𝑠𝑗𝑡 − log 𝑠𝑗𝑡(𝛿, 𝜃) (3.13)

where 𝑠 are the market’s observed shares and 𝑠(𝛿, 𝜃) are calculated market shares. Iteration terminates when the norm
of the change in 𝛿(𝜃) is less than a small number.

With a supply side, marginal costs are then computed according to (3.7):

𝑐𝑗𝑡(𝜃) = 𝑝𝑗𝑡 − 𝜂𝑗𝑡(𝜃). (3.14)

Concentrated out linear parameters are recovered with linear IV-GMM:[︂
𝛽ex

𝛾

]︂
= (𝑋 ′𝑍𝑊𝑍 ′𝑋)−1𝑋 ′𝑍𝑊𝑍 ′𝑌 (𝜃) (3.15)

where

𝑋 =

[︂
𝑋ex

1 0
0 𝑋3

]︂
, 𝑍 =

[︂
𝑍𝐷 0
0 𝑍𝑆

]︂
, 𝑌 (𝜃) =

[︂
𝛿(𝜃)−𝑋en

1 �̂�
𝑐(𝜃)

]︂
. (3.16)

With only a demand side, 𝛼 can be concentrated out, so 𝑋 = 𝑋1, 𝑍 = 𝑍𝐷, and 𝑌 = 𝛿(𝜃) recover the full 𝛽 in (3.15).

Finally, the unobserved product characteristics (i.e., the structural errors),[︂
𝜉(𝜃)
𝜔(𝜃)

]︂
=

[︂
𝛿(𝜃)−𝑋1𝛽
𝑐(𝜃)−𝑋3𝛾

]︂
, (3.17)

are interacted with the instruments to form 𝑔(𝜃) in (3.11), which gives the GMM objective 𝑞(𝜃) in (3.10).

3.2. Estimation 13
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3.2.2 The Gradient

The gradient of the GMM objective in (3.10) is

∇𝑞(𝜃) = 2�̄�(𝜃)′𝑊𝑔(𝜃) (3.18)

where

�̄� =

[︂
�̄�𝐷

�̄�𝑆

]︂
=

1

𝑁

[︃∑︀
𝑗,𝑡 𝑍

′
𝐷,𝑗𝑡

𝜕𝜉𝑗𝑡
𝜕𝜃∑︀

𝑗,𝑡 𝑍
′
𝑆,𝑗𝑡

𝜕𝜔𝑗𝑡

𝜕𝜃

]︃
. (3.19)

Writing 𝛿 as an implicit function of 𝑠 in (3.4) gives the demand-side Jacobian:

𝜕𝜉

𝜕𝜃
=

𝜕𝛿

𝜕𝜃
= −

(︂
𝜕𝑠

𝜕𝛿

)︂−1
𝜕𝑠

𝜕𝜃
. (3.20)

The supply-side Jacobian is derived from the definition of 𝑐 in (3.9):

𝜕𝜔

𝜕𝜃
=

𝜕𝑐

𝜕𝜃
= −𝜕𝑐

𝜕𝑐

𝜕𝜂

𝜕𝜃
. (3.21)

The second term in this expression is derived from the definition of 𝜂 in (3.7):

𝜕𝜂

𝜕𝜃
= −∆−1

(︂
𝜕∆

𝜕𝜃
𝜂 +

𝜕∆

𝜕𝜉
𝜂
𝜕𝜉

𝜕𝜃

)︂
. (3.22)

One thing to note is that 𝜕𝜉
𝜕𝜃 = 𝜕𝛿

𝜕𝜃 and 𝜕𝜔
𝜕𝜃 = 𝜕𝑐

𝜕𝜃 need not hold during optimization if we concentrate out linear
parameters because these are then functions of 𝜃. Fortunately, one can use orthogonality conditions to show that it is
fine to treat these parameters as fixed when computing the gradient.

3.2.3 Weighting Matrices

Conventionally, the 2SLS weighting matrix is used in the first stage:

𝑊 =

[︂
(𝑍 ′

𝐷𝑍𝐷/𝑁)−1 0
0 (𝑍 ′

𝑆𝑍𝑆/𝑁)−1

]︂
. (3.23)

With two-step GMM, 𝑊 is updated before the second stage according to

𝑊 = 𝑆−1. (3.24)

For heteroscedasticity robust weighting matrices,

𝑆 =
1

𝑁

∑︁
𝑗,𝑡

𝑔𝑗𝑡𝑔
′
𝑗𝑡. (3.25)

For clustered weighting matrices with 𝑐 = 1, 2, . . . , 𝐶 clusters,

𝑆 =
1

𝑁

𝐶∑︁
𝑐=1

𝑔𝑐𝑔
′
𝑐, (3.26)

where, letting the set 𝐽𝑐𝑡 ⊂ 𝐽𝑡 denote products in cluster 𝑐 and market 𝑡,

𝑔𝑐 =
∑︁
𝑡∈𝑇

∑︁
𝑗∈𝐽𝑐𝑡

𝑔𝑗𝑡. (3.27)
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For unadjusted weighting matrices,

𝑆 =
1

𝑁

[︂
𝜎2
𝜉𝑍

′
𝐷𝑍𝐷 𝜎𝜉𝜔𝑍

′
𝐷𝑍𝑆

𝜎𝜉𝜔𝑍
′
𝑆𝑍𝐷 𝜎2

𝜔𝑍
′
𝑆𝑍𝑆

]︂
(3.28)

where 𝜎2
𝜉 , 𝜎2

𝜔 , and 𝜎𝜉𝜔 are estimates of the variances and covariance between the structural errors.

Simulation error can be accounted for by resampling agents 𝑟 = 1, . . . , 𝑅 times, evaluating each 𝑔𝑟, and adding the
following to 𝑆:

1

𝑅− 1

𝑅∑︁
𝑟=1

(𝑔𝑟 − ¯̄𝑔)(𝑔𝑟 − ¯̄𝑔)′, ¯̄𝑔 =
1

𝑅

𝑅∑︁
𝑟=1

𝑔𝑟. (3.29)

3.2.4 Standard Errors

An estimate of the asymptotic covariance matrix of
√
𝑁(𝜃 − 𝜃0) is

(�̄�′𝑊�̄�)−1�̄�′𝑊𝑆𝑊�̄�(�̄�′𝑊�̄�)−1. (3.30)

Standard errors are the square root of the diagonal of this matrix divided by 𝑁 .

If the weighting matrix was chosen such that 𝑊 = 𝑆−1, this simplifies to

(�̄�′𝑊�̄�)−1. (3.31)

Standard errors extracted from this simpler expression are called unadjusted.

3.3 Fixed Effects

The unobserved product characteristics can be partitioned into[︂
𝜉𝑗𝑡
𝜔𝑗𝑡

]︂
=

[︂
𝜉𝑘1

+ 𝜉𝑘2
+ · · ·+ 𝜉𝑘𝐸𝐷

+∆𝜉𝑗𝑡
𝜔ℓ1 + 𝜔ℓ2 + · · ·+ 𝜔ℓ𝐸𝑆

+∆𝜔𝑗𝑡

]︂
(3.32)

where 𝑘1, 𝑘2, . . . , 𝑘𝐸𝐷
and ℓ1, ℓ2, . . . , ℓ𝐸𝑆

index unobserved characteristics that are fixed across 𝐸𝐷 and 𝐸𝑆 dimen-
sions. For example, with 𝐸𝐷 = 1 dimension of product fixed effects, 𝜉𝑗𝑡 = 𝜉𝑗 +∆𝜉𝑗𝑡.

Small numbers of fixed effects can be estimated with dummy variables in 𝑋1, 𝑋3, 𝑍𝐷, and 𝑍𝑆 . However, this approach
does not scale with high dimensional fixed effects because it requires constructing and inverting an infeasibly large
matrix in (3.15).

Instead, fixed effects are typically absorbed into 𝑋 , 𝑍, and 𝑌 (𝜃) in (3.15). With one fixed effect, these matrices are
simply de-meaned within each level of the fixed effect. Both 𝑋 and 𝑍 can be de-meaned just once, but 𝑌 (𝜃) must be
de-meaned for each new 𝜃.

This procedure is equivalent to replacing each column of the matrices with residuals from a regression of the column on
the fixed effect. The Frish-Waugh-Lovell (FWL) theorem of Frisch and Waugh (1933) and Lovell (1963) guarantees
that using these residualized matrices gives the same results as including fixed effects as dummy variables. When
𝐸𝐷 > 1 or 𝐸𝑆 > 1, the matrices are residualized with more involved algorithms.

Once fixed effects have been absorbed, estimation is as described above with the structural errors ∆𝜉 and ∆𝜔.

3.3. Fixed Effects 15



PyBLP, Release 1.1.0

3.4 Micro Moments

More detailed micro data on individual choices can be used to supplement the standard demand- and supply-side
moments 𝑔𝐷 and 𝑔𝑆 in (3.11) with an additional 𝑚 = 1, 2, . . . ,𝑀𝑀 micro moments, 𝑔𝑀 , for a total of 𝑀 = 𝑀𝐷 +
𝑀𝑆 +𝑀𝑀 moments:

𝑔 =

⎡⎣𝑔𝐷𝑔𝑆
𝑔𝑀

⎤⎦ . (3.33)

Conlon and Gortmaker (2023) provides a standardized framework for incorporating micro moments into BLP-style
estimation. What follows is a simplified summary of this framework. Each micro moment 𝑚 is the difference between
an observed value 𝑓𝑚(𝑣) and its simulated analogue 𝑓𝑚(𝑣):

𝑔𝑀,𝑚 = 𝑓𝑚(𝑣)− 𝑓𝑚(𝑣), (3.34)

in which 𝑓𝑚(·) is a function that maps a vector of 𝑝 = 1, . . . , 𝑃𝑀 micro moment parts 𝑣 = (𝑣1, . . . , 𝑣𝑃𝑀
)′ or

𝑣 = (𝑣1, . . . , 𝑣𝑃𝑀
)′ into a micro statistic. Each sample micro moment part 𝑝 is an average over observations 𝑛 ∈ 𝑁𝑑𝑚

in the associated micro dataset 𝑑𝑝:

𝑣𝑝 =
1

𝑁𝑑𝑝

∑︁
𝑛∈𝑁𝑑𝑝

𝑣𝑝𝑖𝑛𝑗𝑛𝑡𝑛 . (3.35)

Its simulated analogue is

𝑣𝑝 =

∑︀
𝑡∈𝑇

∑︀
𝑖∈𝐼𝑡

∑︀
𝑗∈𝐽𝑡∪{0} 𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑤𝑑𝑝𝑖𝑗𝑡𝑣𝑝𝑖𝑗𝑡∑︀

𝑡∈𝑇

∑︀
𝑖∈𝐼𝑡

∑︀
𝑗∈𝐽𝑡∪{0} 𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑤𝑑𝑝𝑖𝑗𝑡

, (3.36)

In which 𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑤𝑑𝑝𝑖𝑗𝑡 is the probability an observation in the micro dataset is for an agent 𝑖 who chooses 𝑗 in market
𝑡.

The simplest type of micro moment is just an average over the entire sample, with 𝑓𝑚(𝑣) = 𝑣1. For example, with
𝑣1𝑖𝑗𝑡 equal to the income for an agent 𝑖 who chooses 𝑗 in market 𝑡, micro moment 𝑚 would match the average income
in dataset 𝑑𝑝. Observed values such as conditional expectations, covariances, correlations, or regression coefficients
can be matched by choosing the appropriate function 𝑓𝑚. For example, with 𝑣2𝑖𝑗𝑡 equal to the interaction between
income and an indicator for the choice of the outside option, and with 𝑣3𝑖𝑗𝑡 equal to an indicator for the choiced of
the outside option, 𝑓𝑚(𝑣) = 𝑣2/𝑣3 would match an observed conditional mean income within those who choose the
outside option.

A micro dataset 𝑑, often a survey, is defined by survey weights 𝑤𝑑𝑖𝑗𝑡. For example, 𝑤𝑑𝑖𝑗𝑡 = 1{𝑗 ̸= 0, 𝑡 ∈ 𝑇𝑑} defines
a micro dataset that is a selected sample of inside purchasers in a few markets 𝑇𝑑 ⊂ 𝑇 , giving each market an equal
sampling weight. Different micro datasets are independent.

A micro dataset will often admit multiple micro moment parts. Each micro moment part 𝑝 is defined by its dataset 𝑑𝑝
and micro values 𝑣𝑝𝑖𝑗𝑡. For example, a micro moment part 𝑝 with 𝑣𝑝𝑖𝑗𝑡 = 𝑦𝑖𝑡𝑥𝑗𝑡 delivers the mean 𝑣𝑝 or expectation
𝑣𝑝 of an interaction between some demographic 𝑦𝑖𝑡 and some product characteristic 𝑥𝑗𝑡.

A micro moment is a function of one or more micro moment parts. The simplest type is a function of only one micro
moment part, and matches the simple average defined by the micro moment part. For example, 𝑓𝑚(𝑣) = 𝑣𝑝 with
𝑣𝑝𝑖𝑗𝑡 = 𝑦𝑖𝑡𝑥𝑗𝑡 matches the mean of an interaction between 𝑦𝑖𝑡 and 𝑥𝑗𝑡. Non-simple averages such as conditional
means, covariances, correlations, or regression coefficients can be matched by choosing an appropriate function 𝑓𝑚.
For example, 𝑓𝑚(𝑣) = 𝑣1/𝑣2 with 𝑣1𝑖𝑗𝑡 = 𝑦𝑖𝑡𝑥𝑗𝑡1{𝑗 ̸= 0} and 𝑣2𝑖𝑗𝑡 = 1{𝑗 ̸= 0} matches the conditional mean of an
interaction between 𝑦𝑖𝑡 and 𝑥𝑗𝑡 among those who do not choose the outside option 𝑗 = 0.

Technically, if not all micro moments 𝑚 are simple averages 𝑓𝑚(𝑣) = 𝑣𝑚, then the resulting estimator will no longer
be a GMM estimator, but rather a more generic minimum distance estimator, since these “micro moments” are not
technically sample moments. Regardless, the package uses GMM terminology for simplicity’s sake, and the statistical
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expressions are all the same. Micro moments are computed for each 𝜃 and contribute to the GMM (or minimum
distance) objective 𝑞(𝜃) in (3.10). Their derivatives with respect to 𝜃 are added as rows to �̄� in (3.19), and blocks are
added to both 𝑊 and 𝑆 in (3.23) and (3.24). The covariance between standard moments and micro moments is zero,
so these matrices are block-diagonal. The delta method delivers the covariance matrix for the micro moments:

𝑆𝑀 =
𝜕𝑓(𝑣)

𝜕𝑣′
𝑆𝑃

𝜕𝑓(𝑣)′

𝜕𝑣
. (3.37)

The scaled covariance between micro moment parts 𝑝 and 𝑞 in 𝑆𝑃 is zero if they are based on different micro datasets
𝑑𝑝 neq d_q‘; otherwise, if based on the same dataset 𝑑𝑝 = 𝑑𝑞 = 𝑑,

𝑆𝑃,𝑝𝑞 =
𝑁

𝑁𝑑
Cov(𝑣𝑝𝑖𝑛𝑗𝑛𝑡𝑛 , 𝑣𝑞𝑖𝑛𝑗𝑛𝑡𝑛), (3.38)

in which

Cov(𝑣𝑝𝑖𝑛𝑗𝑛𝑡𝑛 , 𝑣𝑞𝑖𝑛𝑗𝑛𝑡𝑛) =

∑︀
𝑡∈𝑇

∑︀
𝑖∈𝐼𝑡

∑︀
𝑗∈𝐽𝑡∪{0} 𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑤𝑑𝑖𝑗𝑡(𝑣𝑝𝑖𝑗𝑡 − 𝑣𝑝)(𝑣𝑞𝑖𝑗𝑡 − 𝑣𝑞)∑︀

𝑡∈𝑇

∑︀
𝑖∈𝐼𝑡

∑︀
𝑗∈𝐽𝑡∪{0} 𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑤𝑑𝑖𝑗𝑡

. (3.39)

Micro moment parts based on second choice are averages over values 𝑣𝑝𝑖𝑗𝑘𝑡 where 𝑘 indexes second choices, and are
based on datasets defined by survey weights 𝑤𝑑𝑖𝑗𝑘𝑡. A sample micro moment part is

𝑣𝑝 =
1

𝑁𝑑𝑝

∑︁
𝑛∈𝑁𝑑𝑝

𝑣𝑝𝑖𝑛𝑗𝑛𝑘𝑛𝑡𝑛 . (3.40)

Its simulated analogue is

𝑣𝑝 =

∑︀
𝑡∈𝑇

∑︀
𝑖∈𝐼𝑡

∑︀
𝑗,𝑘∈𝐽𝑡∪{0} 𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑠𝑖𝑘(−𝑗)𝑡𝑤𝑑𝑝𝑖𝑗𝑘𝑡𝑣𝑝𝑖𝑗𝑘𝑡∑︀

𝑡∈𝑇

∑︀
𝑖∈𝐼𝑡

∑︀
𝑗,𝑘∈𝐽𝑡∪{0} 𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑠𝑖𝑘(−𝑗)𝑡𝑤𝑑𝑝𝑖𝑗𝑘𝑡

, (3.41)

in which 𝑠𝑖𝑘(−𝑗)𝑡 is the probability of choosing 𝑘 when 𝑗 is removed from the choice set. One can also define micro
moment parts based on second choices where a group of products ℎ(𝑗) containing the first choice 𝑗 is removed from
the choice set. In this case, the above second choice probabilities become 𝑠𝑖𝑘(−ℎ(𝑗))𝑡.

Covariances are defined analogously.

3.5 Random Coefficients Nested Logit

Incorporating parameters that measure within nesting group correlation gives the random coefficients nested logit
(RCNL) model of Brenkers and Verboven (2006) and Grigolon and Verboven (2014). There are ℎ = 1, 2, . . . ,𝐻
nesting groups and each product 𝑗 is assigned to a group ℎ(𝑗). The set 𝐽ℎ𝑡 ⊂ 𝐽𝑡 denotes the products in group ℎ and
market 𝑡.

In the RCNL model, idiosyncratic preferences are partitioned into

𝜖𝑖𝑗𝑡 = 𝜖𝑖ℎ(𝑗)𝑡 + (1− 𝜌ℎ(𝑗))𝜖𝑖𝑗𝑡 (3.42)

where 𝜖𝑖𝑗𝑡 is Type I Extreme Value and 𝜖𝑖ℎ(𝑗)𝑡 is distributed such that 𝜖𝑖𝑗𝑡 is still Type I Extreme Value.

The nesting parameters, 𝜌, can either be a 𝐻 × 1 vector or a scalar so that for all groups 𝜌ℎ = 𝜌. Letting 𝜌 → 0
gives the standard BLP model and 𝜌 → 1 gives division by zero errors. With 𝜌ℎ ∈ (0, 1), the expression for choice
probabilities in (3.5) becomes more complicated:

𝑠𝑖𝑗𝑡 =
exp[𝑉𝑖𝑗𝑡/(1− 𝜌ℎ(𝑗))]

exp[𝑉𝑖ℎ(𝑗)𝑡/(1− 𝜌ℎ(𝑗))]
·

exp𝑉𝑖ℎ(𝑗)𝑡

1 +
∑︀

ℎ∈𝐻 exp𝑉𝑖ℎ𝑡
(3.43)

3.5. Random Coefficients Nested Logit 17
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where

𝑉𝑖ℎ𝑡 = (1− 𝜌ℎ) log
∑︁

𝑘∈𝐽ℎ𝑡

exp[𝑉𝑖𝑘𝑡/(1− 𝜌ℎ)]. (3.44)

The contraction for 𝛿(𝜃) in (3.13) is also slightly different:

𝛿𝑗𝑡 ← 𝛿𝑗𝑡 + (1− 𝜌ℎ(𝑗))[log 𝑠𝑗𝑡 − log 𝑠𝑗𝑡(𝛿, 𝜃)]. (3.45)

Otherwise, estimation is as described above with 𝜌 included in 𝜃.

3.6 Logit and Nested Logit

Letting Σ = 0 gives the simpler logit (or nested logit) model where there is a closed-form solution for 𝛿. In the logit
model,

𝛿𝑗𝑡 = log 𝑠𝑗𝑡 − log 𝑠0𝑡, (3.46)

and a lack of nonlinear parameters means that nonlinear optimization is often unneeded.

In the nested logit model, 𝜌 must be optimized over, but there is still a closed-form solution for 𝛿:

𝛿𝑗𝑡 = log 𝑠𝑗𝑡 − log 𝑠0𝑡 − 𝜌ℎ(𝑗)[log 𝑠𝑗𝑡 − log 𝑠ℎ(𝑗)𝑡]. (3.47)

where

𝑠ℎ𝑡 =
∑︁
𝑗∈𝐽ℎ𝑡

𝑠𝑗𝑡. (3.48)

In both models, a supply side can still be estimated jointly with demand. Estimation is as described above with a
representative agent in each market: 𝐼𝑡 = 1 and 𝑤1 = 1.

3.7 Equilibrium Prices

Counterfactual evaluation, synthetic data simulation, and optimal instrument generation often involve solving for
prices implied by the Bertrand first order conditions in (3.7). Solving this system with Newton’s method is slow and
iterating over 𝑝← 𝑐+ 𝜂(𝑝) may not converge because it is not a contraction.

Instead, Morrow and Skerlos (2011) reformulate the solution to (3.7):

𝑝− 𝑐 = Λ−1(H ⊙ Γ)′(𝑝− 𝑐)− Λ−1𝑠⏟  ⏞  
𝜁

(3.49)

where Λ is a diagonal 𝐽𝑡 × 𝐽𝑡 matrix approximated by

Λ𝑗𝑗 ≈
∑︁
𝑖∈𝐼𝑡

𝑤𝑖𝑡𝑠𝑖𝑗𝑡
𝜕𝑈𝑖𝑗𝑡

𝜕𝑝𝑗𝑡
(3.50)

and Γ is a dense 𝐽𝑡 × 𝐽𝑡 matrix approximated by

Γ𝑗𝑘 ≈
∑︁
𝑖∈𝐼𝑡

𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑠𝑖𝑘𝑡
𝜕𝑈𝑖𝑘𝑡

𝜕𝑝𝑘𝑡
. (3.51)

Equilibrium prices are computed by iterating over the 𝜁-markup equation in (3.49),

𝑝← 𝑐+ 𝜁(𝑝), (3.52)
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which, unlike (3.7), is a contraction. Iteration terminates when the norm of firms’ first order conditions, ||Λ(𝑝)(𝑝 −
𝑐− 𝜁(𝑝))||, is less than a small number.

If marginal costs depend on quantity, then they also depend on prices and need to be updated during each iteration:
𝑐𝑗𝑡 = 𝑐𝑗𝑡(𝑠𝑗𝑡(𝑝)).

3.7. Equilibrium Prices 19
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CHAPTER

FOUR

TUTORIAL

This section uses a series of Jupyter Notebooks to explain how PyBLP can be used to solve example problems, compute
post-estimation outputs, and simulate problems.

For a more concise, targeted, and opinionated tutorial, see the Demand Estimation Mixtape Session, a three day
workshop taught by Jeff Gortmaker in 2024. In order, the days cover pure logit estimation, aggregate BLP estimation,
and micro BLP estimation. Each day has slides and extensive coding exercises (along with Jupyter Notebook solutions)
that use PyBLP.

In addition to the notebooks here and the above workshop, other examples can be found in the API Documentation.
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The online version of the following section may be easier to read.

4.1 Logit and Nested Logit Tutorial

[1]: import pyblp
import numpy as np
import pandas as pd

pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__

[1]: '1.1.0'

In this tutorial, we’ll use data from Nevo (2000a) to solve the paper’s fake cereal problem. Locations of CSV files that contain the data are in the data module.

We will compare two simple models, the plain (IIA) logit model and the nested logit (GEV) model using the fake cereal dataset of Nevo (2000a).

4.1.1 Theory of Plain Logit

Let’s start with the plain logit model under independence of irrelevant alternatives (IIA). In this model (indirect) utility is given by

𝑈𝑖𝑗𝑡 = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex + 𝜉𝑗𝑡 + 𝜖𝑖𝑗𝑡, (4.1)

where 𝜖𝑖𝑗𝑡 is distributed IID with the Type I Extreme Value (Gumbel) distribution. It is common to normalize the mean utility of the outside good to zero so that
𝑈𝑖0𝑡 = 𝜖𝑖0𝑡. This gives us aggregate market shares

𝑠𝑗𝑡 =
exp(𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽

ex + 𝜉𝑗𝑡)

1 +
∑︀

𝑘 exp(𝛼𝑝𝑘𝑡 + 𝑥𝑘𝑡𝛽ex + 𝜉𝑘𝑡)
. (4.2)

If we take logs we get

log 𝑠𝑗𝑡 = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex + 𝜉𝑗𝑡 − log

∑︁
𝑘

exp(𝛼𝑝𝑘𝑡 + 𝑥𝑘𝑡𝛽
ex + 𝜉𝑘𝑡) (4.3)

and

log 𝑠0𝑡 = − log
∑︁
𝑘

exp(𝛼𝑝𝑘𝑡 + 𝑥𝑘𝑡𝛽
ex + 𝜉𝑘𝑡). (4.4)
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By differencing the above we get a linear estimating equation:

log 𝑠𝑗𝑡 − log 𝑠0𝑡 = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex + 𝜉𝑗𝑡. (4.5)

Because the left hand side is data, we can estimate this model using linear IV GMM.

4.1.2 Application of Plain Logit

A Logit Problem can be created by simply excluding the formulation for the nonlinear parameters, 𝑋2, along with any agent information. In other words, it requires
only specifying the linear component of demand.

We’ll set up and solve a simple version of the fake data cereal problem from Nevo (2000a). Since we won’t include any demand-side nonlinear characteristics or
parameters, we don’t have to worry about configuring an optimization routine.

There are some important reserved variable names:

• market_ids are the unique market identifiers which we subscript with 𝑡.

• shares specifies the market shares which need to be between zero and one, and within a market ID,
∑︀

𝑗 𝑠𝑗𝑡 ≤ 1.

• prices are prices 𝑝𝑗𝑡. These have some special properties and are always treated as endogenous.

• demand_instruments0, demand_instruments1, and so on are numbered demand instruments. These represent only the excluded instruments. The
exogenous regressors in 𝑋1 will be automatically added to the set of instruments.

We begin with two steps:

1. Load the product data which at a minimum consists of market_ids, shares, prices, and at least a single column of demand instruments,
demand_instruments0.

2. Define a Formulation for the 𝑋1 (linear) demand model.

• This and all other formulas are similar to R and patsy formulas.

• It includes a constant by default. To exclude the constant, specify either a 0 or a -1.

• To efficiently include fixed effects, use the absorb option and specify which categorical variables you would like to absorb.

• Some model reduction may happen automatically. The constant will be excluded if you include fixed effects and some precautions are taken against
collinearity. However, you will have to make sure that differently-named variables are not collinear.

3. Combine the Formulation and product data to construct a Problem.

4. Use Problem.solve to estimate paramters.

4.1.
Logitand
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Loading the Data

The product_data argument of Problem should be a structured array-like object with fields that store data. Product data can be a structured NumPy array, a
pandas DataFrame, or other similar objects.

[2]: product_data = pd.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION)
product_data.head()

[2]: market_ids city_ids quarter product_ids firm_ids brand_ids shares \
0 C01Q1 1 1 F1B04 1 4 0.012417
1 C01Q1 1 1 F1B06 1 6 0.007809
2 C01Q1 1 1 F1B07 1 7 0.012995
3 C01Q1 1 1 F1B09 1 9 0.005770
4 C01Q1 1 1 F1B11 1 11 0.017934

prices sugar mushy ... demand_instruments10 demand_instruments11 \
0 0.072088 2 1 ... 2.116358 -0.154708
1 0.114178 18 1 ... -7.374091 -0.576412
2 0.132391 4 1 ... 2.187872 -0.207346
3 0.130344 3 0 ... 2.704576 0.040748
4 0.154823 12 0 ... 1.261242 0.034836

demand_instruments12 demand_instruments13 demand_instruments14 \
0 -0.005796 0.014538 0.126244
1 0.012991 0.076143 0.029736
2 0.003509 0.091781 0.163773
3 -0.003724 0.094732 0.135274
4 -0.000568 0.102451 0.130640

demand_instruments15 demand_instruments16 demand_instruments17 \
0 0.067345 0.068423 0.034800
1 0.087867 0.110501 0.087784
2 0.111881 0.108226 0.086439
3 0.088090 0.101767 0.101777
4 0.084818 0.101075 0.125169

demand_instruments18 demand_instruments19
0 0.126346 0.035484
1 0.049872 0.072579
2 0.122347 0.101842
3 0.110741 0.104332
4 0.133464 0.121111

(continues on next page)
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(continued from previous page)

[5 rows x 30 columns]

The product data contains market_ids, product_ids, firm_ids, shares, prices, a number of other IDs and product characteristics, and some pre-
computed excluded demand_instruments0, demand_instruments1, and so on. The product_ids will be incorporated as fixed effects.

For more information about the instruments and the example data as a whole, refer to the data module.

Setting Up the Problem

We can combine the Formulation and product_data to construct a Problem. We pass the Formulation first and the product_data second. We can also
display the properties of the problem by typing its name.

[3]: logit_formulation = pyblp.Formulation('prices', absorb='C(product_ids)')
logit_formulation

[3]: prices + Absorb[C(product_ids)]

[4]: problem = pyblp.Problem(logit_formulation, product_data)
problem

[4]: Dimensions:
================================
T N F K1 MD ED

--- ---- --- ---- ---- ----
94 2256 5 1 20 1
================================

Formulations:
==================================

Column Indices: 0
-------------------------- ------
X1: Linear Characteristics prices
==================================

Two sets of properties are displayed:

1. Dimensions of the data.

2. Formulations of the problem.

The dimensions describe the shapes of matrices as laid out in Notation. They include:

4.1.
Logitand
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• 𝑇 is the number of markets.

• 𝑁 is the length of the dataset (the number of products across all markets).

• 𝐹 is the number of firms, which we won’t use in this example.

• 𝐾1 is the dimension of the linear demand parameters.

• 𝑀𝐷 is the dimension of the instrument variables (excluded instruments and exogenous regressors).

• 𝐸𝐷 is the number of fixed effect dimensions (one-dimensional fixed effects, two-dimensional fixed effects, etc.).

There is only a single Formulation for this model.

• 𝑋1 is the linear component of utility for demand and depends only on prices (after the fixed effects are removed).

Solving the Problem

The Problem.solve method always returns a ProblemResults class, which can be used to compute post-estimation outputs. See the post estimation tutorial for more
information.

[5]: logit_results = problem.solve()
logit_results

[5]: Problem Results Summary:
==========================================
GMM Objective Clipped Weighting Matrix
Step Value Shares Condition Number
---- --------- ------- ----------------
2 +1.9E+02 0 +5.7E+07

==========================================

Cumulative Statistics:
========================
Computation Objective

Time Evaluations
----------- -----------
00:00:00 2

========================

Beta Estimates (Robust SEs in Parentheses):
==========

prices

(continues on next page)
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(continued from previous page)

----------
-3.0E+01

(+1.0E+00)
==========

4.1.3 Theory of Nested Logit

We can extend the logit model to allow for correlation within a group ℎ so that

𝑈𝑖𝑗𝑡 = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex + 𝜉𝑗𝑡 + 𝜖ℎ(𝑗)𝑡𝑖 + (1− 𝜌)𝜖𝑖𝑗𝑡. (4.6)

Now, we require that 𝜖𝑗𝑡𝑖 = 𝜖ℎ(𝑗)𝑡𝑖 + (1− 𝜌)𝜖𝑗𝑡𝑖 is distributed IID with the Type I Extreme Value (Gumbel) distribution. As 𝜌→ 1, all consumers stay within their
group. As 𝜌→ 0, this collapses to the IIA logit. Note that if we wanted, we could allow 𝜌 to differ between groups with the notation 𝜌ℎ(𝑗).

This gives us aggregate market shares as the product of two logits, the within group logit and the across group logit:

𝑠𝑗𝑡 =
exp[𝑉𝑗𝑡/(1− 𝜌)]

exp[𝑉ℎ(𝑗)𝑡/(1− 𝜌)]
·

exp𝑉ℎ(𝑗)𝑡

1 +
∑︀

ℎ exp𝑉ℎ𝑡
, (4.7)

where 𝑉𝑗𝑡 = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex + 𝜉𝑗𝑡.

After some work we again obtain the linear estimating equation:

log 𝑠𝑗𝑡 − log 𝑠0𝑡 = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex + 𝜌 log 𝑠𝑗|ℎ(𝑗)𝑡 + 𝜉𝑗𝑡, (4.8)

where 𝑠𝑗|ℎ(𝑗)𝑡 = 𝑠𝑗𝑡/𝑠ℎ(𝑗)𝑡 and 𝑠ℎ(𝑗)𝑡 is the share of group ℎ in market 𝑡. See Berry (1994) or Cardell (1997) for more information.

Again, the left hand side is data, though the ln 𝑠𝑗|ℎ(𝑗)𝑡 is clearly endogenous which means we must instrument for it. Rather than include ln 𝑠𝑗|ℎ(𝑗)𝑡 along with the
linear components of utility, 𝑋1, whenever nesting_ids are included in product_data, 𝜌 is treated as a nonlinear 𝑋2 parameter. This means that the linear
component is given instead by

log 𝑠𝑗𝑡 − log 𝑠0𝑡 − 𝜌 log 𝑠𝑗|ℎ(𝑗)𝑡 = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex + 𝜉𝑗𝑡. (4.9)

This is done for two reasons:

1. It forces the user to treat 𝜌 as an endogenous parameter.

2. It extends much more easily to the RCNL model of Brenkers and Verboven (2006).

A common choice for an additional instrument is the number of products per nest.

4.1.
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4.1.4 Application of Nested Logit

By including nesting_ids (another reserved name) as a field in product_data, we tell the package to estimate a nested logit model, and we don’t need to
change any of the formulas. We show how to construct the category groupings in two different ways:

1. We put all products in a single nest (only the outside good in the other nest).

2. We put products into two nests (either mushy or non-mushy).

We also construct an additional instrument based on the number of products per nest. Typically this is useful as a source of exogenous variation in the within group
share ln 𝑠𝑗|ℎ(𝑗)𝑡. However, in this example because the number of products per nest does not vary across markets, if we include product fixed effects, this instrument
is irrelevant.

We’ll define a function that constructs the additional instrument and solves the nested logit problem. We’ll exclude product ID fixed effects, which are collinear
with mushy, and we’ll choose 𝜌 = 0.7 as the initial value at which the optimization routine will start.

[6]: def solve_nl(df):
groups = df.groupby(['market_ids', 'nesting_ids'])
df['demand_instruments20'] = groups['shares'].transform(np.size)
nl_formulation = pyblp.Formulation('0 + prices')
problem = pyblp.Problem(nl_formulation, df)
return problem.solve(rho=0.7)

First, we’ll solve the problem when there’s a single nest for all products, with the outside good in its own nest.

[7]: df1 = product_data.copy()
df1['nesting_ids'] = 1
nl_results1 = solve_nl(df1)
nl_results1

[7]: Problem Results Summary:
======================================================================================
GMM Objective Projected Reduced Clipped Weighting Matrix Covariance Matrix
Step Value Gradient Norm Hessian Shares Condition Number Condition Number
---- --------- ------------- -------- ------- ---------------- -----------------
2 +2.0E+02 +1.2E-09 +1.1E+04 0 +2.0E+09 +3.0E+04

======================================================================================

Cumulative Statistics:
=================================================
Computation Optimizer Optimization Objective

Time Converged Iterations Evaluations
----------- --------- ------------ -----------

(continues on next page)
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(continued from previous page)

00:00:04 Yes 3 8
=================================================

Rho Estimates (Robust SEs in Parentheses):
==========
All Groups
----------
+9.8E-01

(+1.4E-02)
==========

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-1.2E+00

(+4.0E-01)
==========

When we inspect the Problem, the only changes from the plain logit model is the additional instrument that contributes to 𝑀𝐷 and the inclusion of 𝐻 , the number
of nesting categories.

[8]: nl_results1.problem

[8]: Dimensions:
===============================
T N F K1 MD H

--- ---- --- ---- ---- ---
94 2256 5 1 21 1
===============================

Formulations:
==================================

Column Indices: 0
-------------------------- ------
X1: Linear Characteristics prices
==================================

Next, we’ll solve the problem when there are two nests for mushy and non-mushy.
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[9]: df2 = product_data.copy()
df2['nesting_ids'] = df2['mushy']
nl_results2 = solve_nl(df2)
nl_results2

[9]: Problem Results Summary:
======================================================================================
GMM Objective Projected Reduced Clipped Weighting Matrix Covariance Matrix
Step Value Gradient Norm Hessian Shares Condition Number Condition Number
---- --------- ------------- -------- ------- ---------------- -----------------
2 +6.9E+02 +3.0E-10 +5.6E+03 0 +5.1E+08 +2.0E+04

======================================================================================

Cumulative Statistics:
=================================================
Computation Optimizer Optimization Objective

Time Converged Iterations Evaluations
----------- --------- ------------ -----------
00:00:03 Yes 3 8

=================================================

Rho Estimates (Robust SEs in Parentheses):
==========
All Groups
----------
+8.9E-01

(+1.9E-02)
==========

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-7.8E+00

(+4.8E-01)
==========

For both cases we find that 𝜌 > 0.8.

Finally, we’ll also look at the adjusted parameter on prices, 𝛼/(1− 𝜌).
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[10]: nl_results1.beta[0] / (1 - nl_results1.rho)

[10]: array([[-67.39338888]])

[11]: nl_results2.beta[0] / (1 - nl_results2.rho)

[11]: array([[-72.27074638]])

Treating Within Group Shares as Exogenous

The package is designed to prevent the user from treating the within group share, log 𝑠𝑗|ℎ(𝑗)𝑡, as an exogenous variable. For example, if we were to compute a
group_share variable and use the algebraic functionality of Formulation by including the expression log(shares / group_share) in our formula for
𝑋1, the package would raise an error because the package knows that shares should not be included in this formulation.

To demonstrate why this is a bad idea, we’ll override this feature by calculating log 𝑠𝑗|ℎ(𝑗)𝑡 and including it as an additional variable in 𝑋1. To do so, we’ll first
re-define our function for setting up and solving the nested logit problem.

[12]: def solve_nl2(df):
groups = df.groupby(['market_ids', 'nesting_ids'])
df['group_share'] = groups['shares'].transform(np.sum)
df['within_share'] = df['shares'] / df['group_share']
df['demand_instruments20'] = groups['shares'].transform(np.size)
nl2_formulation = pyblp.Formulation('0 + prices + log(within_share)')
problem = pyblp.Problem(nl2_formulation, df.drop(columns=['nesting_ids']))
return problem.solve()

Again, we’ll solve the problem when there’s a single nest for all products, with the outside good in its own nest.

[13]: nl2_results1 = solve_nl2(df1)
nl2_results1

[13]: Problem Results Summary:
=============================================================
GMM Objective Clipped Weighting Matrix Covariance Matrix
Step Value Shares Condition Number Condition Number
---- --------- ------- ---------------- -----------------
2 +2.0E+02 0 +2.1E+09 +1.1E+04

=============================================================

Cumulative Statistics:

(continues on next page)
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(continued from previous page)

========================
Computation Objective

Time Evaluations
----------- -----------
00:00:00 2

========================

Beta Estimates (Robust SEs in Parentheses):
=============================

prices log(within_share)
---------- -----------------
-1.0E+00 +9.9E-01

(+2.4E-01) (+7.9E-03)
=============================

And again, we’ll solve the problem when there are two nests for mushy and non-mushy.

[14]: nl2_results2 = solve_nl2(df2)
nl2_results2

[14]: Problem Results Summary:
=============================================================
GMM Objective Clipped Weighting Matrix Covariance Matrix
Step Value Shares Condition Number Condition Number
---- --------- ------- ---------------- -----------------
2 +7.0E+02 0 +5.5E+08 +7.7E+03

=============================================================

Cumulative Statistics:
========================
Computation Objective

Time Evaluations
----------- -----------
00:00:00 2

========================

Beta Estimates (Robust SEs in Parentheses):
=============================

prices log(within_share)
---------- -----------------
-6.8E+00 +9.3E-01

(continues on next page)
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(continued from previous page)

(+2.9E-01) (+1.1E-02)
=============================

One can observe that we obtain parameter estimates which are quite different than above.

[15]: nl2_results1.beta[0] / (1 - nl2_results1.beta[1])

[15]: array([-86.37368445])

[16]: nl2_results2.beta[0] / (1 - nl2_results2.beta[1])

[16]: array([-100.14496891])
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The online version of the following section may be easier to read.

4.2 Random Coefficients Logit Tutorial with the Fake Cereal Data

[1]: import pyblp
import numpy as np
import pandas as pd

pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__

[1]: '1.1.0'

In this tutorial, we’ll use data from Nevo (2000a) to solve the paper’s fake cereal problem. Locations of CSV files that contain the data are in the data module.

4.2.1 Theory of Random Coefficients Logit

The random coefficients model extends the plain logit model by allowing for correlated tastes for different product characteristics. In this model (indirect) utility is
given by

𝑢𝑖𝑗𝑡 = 𝛼𝑖𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex
𝑖 + 𝜉𝑗𝑡 + 𝜖𝑖𝑗𝑡 (4.10)

The main addition is that 𝛽𝑖 = (𝛼𝑖, 𝛽
ex
𝑖 ) have individual specific subscripts 𝑖.

Conditional on 𝛽𝑖, the individual market share follow the same logit form as before. But now we must integrate over heterogeneous individuals to get the aggregate
market share:

𝑠𝑗𝑡(𝛼, 𝛽, 𝜃) =

∫︁
exp(𝛼𝑖𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽

ex
𝑖 + 𝜉𝑗𝑡)

1 +
∑︀

𝑘 exp(𝛼𝑖𝑝𝑗𝑡 + 𝑥𝑘𝑡𝛽
ex
𝑖 + 𝜉𝑘𝑡)

𝑓(𝛼𝑖, 𝛽𝑖 | 𝜃). (4.11)

In general, this integral needs to be calculated numerically. This also means that we can’t directly linearize the model. It is common to re-parametrize the model to
separate the aspects of mean utility that all individuals agree on, 𝛿𝑗𝑡 = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽

ex + 𝜉𝑗𝑡, from the individual specific heterogeneity, 𝜇𝑖𝑗𝑡(𝜃). This gives us

𝑠𝑗𝑡(𝛿𝑗𝑡, 𝜃) =

∫︁
exp(𝛿𝑗𝑡 + 𝜇𝑖𝑗𝑡)

1 +
∑︀

𝑘 exp(𝛿𝑘𝑡 + 𝜇𝑖𝑘𝑡)
𝑓(𝜇𝑖𝑡|𝜃). (4.12)
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Given a guess of 𝜃 we can solve the system of nonlinear equations for the vector 𝛿 which equates observed and predicted market share 𝑠𝑗𝑡 = 𝑠𝑗𝑡(𝛿, 𝜃). Now we can
perform a linear IV GMM regression of the form

𝛿𝑗𝑡(𝜃) = 𝛼𝑝𝑗𝑡 + 𝑥𝑗𝑡𝛽
ex + 𝜉𝑗𝑡. (4.13)

The moments are constructed by interacting the predicted residuals 𝜉𝑗𝑡(𝜃) with instruments 𝑧𝑗𝑡 to form

𝑔(𝜃) =
1

𝑁

∑︁
𝑗,𝑡

𝑧′𝑗𝑡𝜉𝑗𝑡(𝜃). (4.14)

4.2.2 Random Coefficients

To include random coefficients we need to add a Formulation for the demand-side nonlinear characteristics 𝑋2.

Just like in the logit case we have the same reserved field names in product_data:

• market_ids are the unique market identifiers which we subscript 𝑡.

• shares specifies the market share which need to be between zero and one, and within a market ID,
∑︀

𝑗 𝑠𝑗𝑡 < 1.

• prices are prices 𝑝𝑗𝑡. These have some special properties and are always treated as endogenous.

• demand_instruments0, demand_instruments1, and so on are numbered demand instruments. These represent only the excluded instruments. The
exogenous regressors in 𝑋1 (of which 𝑋2 is typically a subset) will be automatically added to the set of instruments.

We proceed with the following steps:

1. Load the product data which at a minimum consists of market_ids, shares, prices, and at least a single column of demand instruments,
demand_instruments0.

2. Define a Formulation for the 𝑋1 (linear) demand model.

• This and all other formulas are similar to R and patsy formulas.

• It includes a constant by default. To exclude the constant, specify either a 0 or a -1.

• To efficiently include fixed effects, use the absorb option and specify which categorical variables you would like to absorb.

• Some model reduction may happen automatically. The constant will be excluded if you include fixed effects and some precautions are taken against
collinearity. However, you will have to make sure that differently-named variables are not collinear.

3. Define a Formulation for the 𝑋2 (nonlinear) demand model.

• Include only the variables over which we want random coefficients.

• Do not absorb or include fixed effects.
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• It will include a random coefficient on the constant (to capture inside good vs. outside good preference) unless you specify not to with a 0 or a -1.

4. Define an Integration configuration to solve the market share integral from several available options:

• Monte Carlo integration (pseudo-random draws).

• Product rule quadrature.

• Sparse grid quadrature.

5. Combine Formulation classes, product_data, and the Integration configuration to construct a Problem.

6. Use the Problem.solve method to estimate paramters.

• It is required to specify an initial guess of the nonlinear parameters. This serves two primary purposes: speeding up estimation and indicating to the
solver through initial values of zero which parameters are restricted to be always zero.

4.2.3 Specification of Random Taste Parameters

It is common to assume that 𝑓(𝛽𝑖 | 𝜃) follows a multivariate normal distribution, and to break it up into three parts:

1. A mean 𝐾1 × 1 taste which all individuals agree on, 𝛽.

2. A 𝐾2 × 𝐾2 covariance matrix, 𝑉 . As is common with multivariate normal distributions, 𝑉 is not estimated directly. Rather, its matrix square (Cholesky)
root Σ is estimated where ΣΣ′ = 𝑉 .

3. Any 𝐾2 ×𝐷 interactions, Π, with observed 𝐷 × 1 demographic data, 𝑑𝑖.

Together this gives us that

𝛽𝑖 ∼ 𝑁(𝛽 +Π𝑑𝑖,ΣΣ
′). (4.15)

Problem.solve takes an initial guess Σ0 of Σ. It guarantees that Σ̂ (the estimated parameters) will have the same sparsity structure as Σ0. So any zero element of Σ
is restricted to be zero in the solution Σ̂. For example, a popular restriction is that Σ is diagonal, this can be achieved by passing a diagonal matrix as Σ0.

4.2.4 Loading Data

The product_data argument of Problem should be a structured array-like object with fields that store data. Product data can be a structured NumPy array, a
pandas DataFrame, or other similar objects.

[2]: product_data = pd.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION)
product_data.head()
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[2]: market_ids city_ids quarter product_ids firm_ids brand_ids shares \
0 C01Q1 1 1 F1B04 1 4 0.012417
1 C01Q1 1 1 F1B06 1 6 0.007809
2 C01Q1 1 1 F1B07 1 7 0.012995
3 C01Q1 1 1 F1B09 1 9 0.005770
4 C01Q1 1 1 F1B11 1 11 0.017934

prices sugar mushy ... demand_instruments10 demand_instruments11 \
0 0.072088 2 1 ... 2.116358 -0.154708
1 0.114178 18 1 ... -7.374091 -0.576412
2 0.132391 4 1 ... 2.187872 -0.207346
3 0.130344 3 0 ... 2.704576 0.040748
4 0.154823 12 0 ... 1.261242 0.034836

demand_instruments12 demand_instruments13 demand_instruments14 \
0 -0.005796 0.014538 0.126244
1 0.012991 0.076143 0.029736
2 0.003509 0.091781 0.163773
3 -0.003724 0.094732 0.135274
4 -0.000568 0.102451 0.130640

demand_instruments15 demand_instruments16 demand_instruments17 \
0 0.067345 0.068423 0.034800
1 0.087867 0.110501 0.087784
2 0.111881 0.108226 0.086439
3 0.088090 0.101767 0.101777
4 0.084818 0.101075 0.125169

demand_instruments18 demand_instruments19
0 0.126346 0.035484
1 0.049872 0.072579
2 0.122347 0.101842
3 0.110741 0.104332
4 0.133464 0.121111

[5 rows x 30 columns]

The product data contains market_ids, product_ids, firm_ids, shares, prices, a number of other firm IDs and product characteristics, and some
pre-computed excluded demand_instruments0, demand_instruments1, and so on. The product_ids will be incorporated as fixed effects.

For more information about the instruments and the example data as a whole, refer to the data module.
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4.2.5 Setting Up and Solving the Problem Without Demographics

Formulations, product data, and an integration configuration are collectively used to initialize a Problem. Once initialized, Problem.solve runs the estimation routine.
The arguments to Problem.solve configure how estimation is performed. For example, optimization and iteration arguments configure the optimization
and iteration routines that are used by the outer and inner loops of estimation.

We’ll specify Formulation configurations for 𝑋1, the demand-side linear characteristics, and 𝑋2, the nonlinear characteristics.

• The formulation for 𝑋1 consists of prices and fixed effects constructed from product_ids, which we will absorb using absorb argument of Formu-
lation.

• If we were interested in reporting estimates for each fixed effect, we could replace the formulation for 𝑋1 with Formulation('prices +
C(product_ids)').

• Because sugar, mushy, and the constant are collinear with product_ids, we can include them in 𝑋2 but not in 𝑋1.

[3]: X1_formulation = pyblp.Formulation('0 + prices', absorb='C(product_ids)')
X2_formulation = pyblp.Formulation('1 + prices + sugar + mushy')
product_formulations = (X1_formulation, X2_formulation)
product_formulations

[3]: (prices + Absorb[C(product_ids)], 1 + prices + sugar + mushy)

We also need to specify an Integration configuration. We consider two alternatives:

1. Monte Carlo draws: we simulate 50 individuals from a random normal distribution. This is just for simplicity. In practice quasi-Monte Carlo sequences such
as Halton draws are preferable, and there should generally be many more simulated individuals than just 50.

2. Product rules: we construct nodes and weights according to a product rule that exactly integrates polynomials of degree 5× 2− 1 = 9 or less.

[4]: mc_integration = pyblp.Integration('monte_carlo', size=50, specification_options={'seed': 0})
mc_integration

[4]: Configured to construct nodes and weights with Monte Carlo simulation with options {seed: 0}.

[5]: pr_integration = pyblp.Integration('product', size=5)
pr_integration

[5]: Configured to construct nodes and weights according to the level-5 Gauss-Hermite product rule with options {}.

[6]: mc_problem = pyblp.Problem(product_formulations, product_data, integration=mc_integration)
mc_problem
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[6]: Dimensions:
============================================
T N F I K1 K2 MD ED

--- ---- --- ---- ---- ---- ---- ----
94 2256 5 4700 1 4 20 1
============================================

Formulations:
===========================================================

Column Indices: 0 1 2 3
----------------------------- ------ ------ ----- -----
X1: Linear Characteristics prices

X2: Nonlinear Characteristics 1 prices sugar mushy
===========================================================

[7]: pr_problem = pyblp.Problem(product_formulations, product_data, integration=pr_integration)
pr_problem

[7]: Dimensions:
=============================================
T N F I K1 K2 MD ED

--- ---- --- ----- ---- ---- ---- ----
94 2256 5 58750 1 4 20 1
=============================================

Formulations:
===========================================================

Column Indices: 0 1 2 3
----------------------------- ------ ------ ----- -----
X1: Linear Characteristics prices

X2: Nonlinear Characteristics 1 prices sugar mushy
===========================================================

As an illustration of how to configure the optimization routine, we’ll use a simpler, non-default Optimization configuration that doesn’t support parameter bounds,
and use a relatively loose tolerance so the problems are solved quickly. In practice along with more integration draws, it’s a good idea to use a tighter termination
tolerance.

[8]: bfgs = pyblp.Optimization('bfgs', {'gtol': 1e-4})
bfgs

[8]: Configured to optimize using the BFGS algorithm implemented in SciPy with analytic gradients and options {gtol: +1.0E-
→˓04}.
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We estimate three versions of the model:

1. An unrestricted covariance matrix for random tastes using Monte Carlo integration.

2. An unrestricted covariance matrix for random tastes using the product rule.

3. A restricted diagonal matrix for random tastes using Monte Carlo Integration.

Notice that the only thing that changes when we estimate the restricted covariance is our initial guess of Σ0. The upper diagonal in this initial guess is ignored
because we are optimizing over the lower-triangular Cholesky root of 𝑉 = ΣΣ′.

[9]: results1 = mc_problem.solve(sigma=np.ones((4, 4)), optimization=bfgs)
results1

[9]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
2 +1.5E+02 +8.7E-05 +8.5E-02 +6.5E+03 0 +5.2E+07 +8.3E+05

=======================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:01:48 Yes 58 75 82256 252902

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
=========================================================================================================================
Sigma: 1 prices sugar mushy | Sigma Squared: 1 prices sugar mushy
------ ---------- ---------- ---------- ---------- | -------------- ---------- ---------- ---------- ---------
→˓-
1 +1.2E+00 | 1 +1.5E+00 -1.4E+01 +7.3E-02 -7.1E-01

(+3.0E+00) | (+7.2E+00) (+5.2E+01) (+2.2E-01) (+2.
→˓3E+00)

|
prices -1.1E+01 +8.4E+00 | prices -1.4E+01 +2.0E+02 -1.5E+00 +1.5E+00

(+1.8E+01) (+1.2E+01) | (+5.2E+01) (+3.1E+02) (+1.2E+00) (+1.
→˓5E+01)

|

(continues on next page)
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(continued from previous page)

sugar +6.1E-02 -9.1E-02 +3.8E-02 | sugar +7.3E-02 -1.5E+00 +1.3E-02 +2.0E-02
(+2.5E-01) (+2.3E-01) (+8.3E-02) | (+2.2E-01) (+1.2E+00) (+2.8E-02) (+2.7E-

→˓01)
|

mushy -5.9E-01 -6.2E-01 -2.3E-02 +4.8E-01 | mushy -7.1E-01 +1.5E+00 +2.0E-02 +9.6E-01
(+2.1E+00) (+1.5E+00) (+2.5E+00) (+1.3E+00) | (+2.3E+00) (+1.5E+01) (+2.7E-01) (+4.

→˓0E+00)
=========================================================================================================================

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-3.1E+01

(+6.0E+00)
==========

[10]: results2 = pr_problem.solve(sigma=np.ones((4, 4)), optimization=bfgs)
results2

[10]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
2 +1.6E+02 +1.1E-05 +1.6E-02 +5.3E+03 0 +5.3E+07 +5.0E+20

=======================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:04:57 No 63 130 96884 301280

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
=========================================================================================================================
Sigma: 1 prices sugar mushy | Sigma Squared: 1 prices sugar mushy
------ ---------- ---------- ---------- ---------- | -------------- ---------- ---------- ---------- ---------
→˓-

(continues on next page)
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(continued from previous page)

1 -7.4E-01 | 1 +5.5E-01 -9.4E+00 +8.3E-02 -1.1E-01
(+2.3E+00) | (+3.4E+00) (+3.5E+01) (+1.6E-01) (+6.4E-

→˓01)
|

prices +1.3E+01 +6.6E-06 | prices -9.4E+00 +1.6E+02 -1.4E+00 +1.9E+00
(+7.5E+00) (+2.7E+03) | (+3.5E+01) (+1.9E+02) (+8.0E-01) (+8.

→˓9E+00)
|

sugar -1.1E-01 -7.4E-08 -8.9E-09 | sugar +8.3E-02 -1.4E+00 +1.2E-02 -1.7E-02
(+2.0E-01) (+2.2E+05) (+5.2E+04) | (+1.6E-01) (+8.0E-01) (+2.2E-02) (+1.6E-

→˓01)
|

mushy +1.5E-01 -4.3E-07 +1.6E-07 +4.7E-08 | mushy -1.1E-01 +1.9E+00 -1.7E-02 +2.2E-02
(+6.8E-01) (+5.0E+03) (+7.0E+02) (+4.3E+02) | (+6.4E-01) (+8.9E+00) (+1.6E-01) (+2.0E-

→˓01)
=========================================================================================================================

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-3.1E+01

(+4.0E+00)
==========

[11]: results3 = mc_problem.solve(sigma=np.eye(4), optimization=bfgs)
results3

[11]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
2 +1.8E+02 +1.3E-06 +1.1E+00 +6.0E+03 0 +5.8E+07 +4.8E+04

=======================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations

(continues on next page)
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----------- --------- ------------ ----------- ----------- -----------
00:00:28 Yes 16 24 19529 60447

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
======================================================
Sigma: 1 prices sugar mushy
------ ---------- ---------- ---------- ----------

1 +5.2E-02
(+1.1E+00)

prices +0.0E+00 -4.3E-01
(+8.0E+00)

sugar +0.0E+00 +0.0E+00 +3.6E-02
(+5.8E-02)

mushy +0.0E+00 +0.0E+00 +0.0E+00 +5.0E-01
(+1.7E+00)

======================================================

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-3.0E+01

(+1.4E+00)
==========

We see that all three models give similar estimates of the price coefficient 𝛼 ≈ −30. Note a few of the estimated terms on the diagonal of Σ are negative. Since the
diagonal consists of standard deviations, negative values are unrealistic. When using another optimization routine that supports bounds (like the default L-BFGS-B
routine), these diagonal elements are by default bounded from below by zero.

4.2.6 Adding Demographics to the Problem

To add demographic data we need to make two changes:

1. We need to load agent_data, which for this cereal problem contains pre-computed Monte Carlo draws and demographics.

2. We need to add an agent_formulation to the model.
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The agent data has several reserved column names.

• market_ids are the index that link the agent data to the market_ids in product data.

• weights are the weights 𝑤𝑖𝑡 attached to each agent. In each market, these should sum to one so that
∑︀

𝑖 𝑤𝑖𝑡 = 1. It is often the case the 𝑤𝑖𝑡 = 1/𝐼𝑡 where
𝐼𝑡 is the number of agents in market 𝑡, so that each agent gets equal weight. Other possibilities include quadrature nodes and weights.

• nodes0, nodes1, and so on are the nodes at which the unobserved agent tastes 𝜇𝑖𝑗𝑡 are evaluated. The nodes should be labeled from 0, . . . ,𝐾2 − 1 where
𝐾2 is the number of random coefficients.

• Other fields are the realizations of the demographics 𝑑 themselves.

[12]: agent_data = pd.read_csv(pyblp.data.NEVO_AGENTS_LOCATION)
agent_data.head()

[12]: market_ids city_ids quarter weights nodes0 nodes1 nodes2 \
0 C01Q1 1 1 0.05 0.434101 -1.500838 -1.151079
1 C01Q1 1 1 0.05 -0.726649 0.133182 -0.500750
2 C01Q1 1 1 0.05 -0.623061 -0.138241 0.797441
3 C01Q1 1 1 0.05 -0.041317 1.257136 -0.683054
4 C01Q1 1 1 0.05 -0.466691 0.226968 1.044424

nodes3 income income_squared age child
0 0.161017 0.495123 8.331304 -0.230109 -0.230851
1 0.129732 0.378762 6.121865 -2.532694 0.769149
2 -0.795549 0.105015 1.030803 -0.006965 -0.230851
3 0.259044 -1.485481 -25.583605 -0.827946 0.769149
4 0.092019 -0.316597 -6.517009 -0.230109 -0.230851

The agent formulation tells us which columns of demographic information to interact with 𝑋2.

[13]: agent_formulation = pyblp.Formulation('0 + income + income_squared + age + child')
agent_formulation

[13]: income + income_squared + age + child

This tells us to include demographic realizations for income, income_squared, age, and the presence of children, child, but to ignore other possible
demographics when interacting demographics with 𝑋2. We should also generally exclude the constant from the demographic formula.

Now we configure the Problem to include the agent_formulation and agent_data, which follow the product_formulations and product_data.

When we display the class, it lists the demographic interactions in the table of formulations and reports 𝐷 = 4, the dimension of the demographic draws.
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[14]: nevo_problem = pyblp.Problem(
product_formulations,
product_data,
agent_formulation,
agent_data

)
nevo_problem

[14]: Dimensions:
=================================================
T N F I K1 K2 D MD ED

--- ---- --- ---- ---- ---- --- ---- ----
94 2256 5 1880 1 4 4 20 1
=================================================

Formulations:
===================================================================

Column Indices: 0 1 2 3
----------------------------- ------ -------------- ----- -----
X1: Linear Characteristics prices

X2: Nonlinear Characteristics 1 prices sugar mushy
d: Demographics income income_squared age child

===================================================================

The initialized problem can be solved with Problem.solve. We’ll use the same starting values as Nevo (2000a). By passing a diagonal matrix as starting values for
Σ, we’re choosing to ignore covariance terms. Similarly, zeros in the starting values for Π mean that those parameters will be fixed at zero.

To replicate common estimates, we’ll use the non-default BFGS optimization routine (with a slightly tighter tolerance to avoid getting stuck at a spurious local
minimum), and we’ll configure Problem.solve to use 1-step GMM instead of 2-step GMM.

[15]: initial_sigma = np.diag([0.3302, 2.4526, 0.0163, 0.2441])
initial_pi = np.array([

[ 5.4819, 0, 0.2037, 0 ],
[15.8935, -1.2000, 0, 2.6342],
[-0.2506, 0, 0.0511, 0 ],
[ 1.2650, 0, -0.8091, 0 ]

])
tighter_bfgs = pyblp.Optimization('bfgs', {'gtol': 1e-5})
nevo_results = nevo_problem.solve(

initial_sigma,
initial_pi,
optimization=tighter_bfgs,

(continues on next page)
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method='1s'
)
nevo_results

[15]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
1 +4.6E+00 +6.9E-06 +3.3E-05 +1.6E+04 0 +6.9E+07 +8.4E+08

=======================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:01:12 Yes 51 57 46389 143977

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
=====================================================================================================================
Sigma: 1 prices sugar mushy | Pi: income income_squared age child
------ ---------- ---------- ---------- ---------- | ------ ---------- -------------- ---------- ----------

1 +5.6E-01 | 1 +2.3E+00 +0.0E+00 +1.3E+00 +0.0E+00
(+1.6E-01) | (+1.2E+00) (+6.3E-01)

|
prices +0.0E+00 +3.3E+00 | prices +5.9E+02 -3.0E+01 +0.0E+00 +1.1E+01

(+1.3E+00) | (+2.7E+02) (+1.4E+01) (+4.1E+00)
|

sugar +0.0E+00 +0.0E+00 -5.8E-03 | sugar -3.8E-01 +0.0E+00 +5.2E-02 +0.0E+00
(+1.4E-02) | (+1.2E-01) (+2.6E-02)

|
mushy +0.0E+00 +0.0E+00 +0.0E+00 +9.3E-02 | mushy +7.5E-01 +0.0E+00 -1.4E+00 +0.0E+00

(+1.9E-01) | (+8.0E-01) (+6.7E-01)
=====================================================================================================================

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------

(continues on next page)
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(continued from previous page)

-6.3E+01
(+1.5E+01)
==========

Results are similar to those in the original paper with a (scaled) objective value of 𝑞(𝜃) = 4.65 and a price coefficient of 𝛼 = −62.7.

4.2.7 Restricting Parameters

Because the interactions between price, income, and income_squared are potentially collinear, we might worry that Π̂21 = 588 and Π̂22 = −30.2 are
pushing the price coefficient in opposite directions. Both are large in magnitude but statistically insignficant. One way of dealing with this is to restrict Π22 = 0.

There are two ways we can do this:

1. Change the initial Π0 values to make this term zero.

2. Change the agent formula to drop income_squared.

First, we’ll change the initial Π0 values.

[16]: restricted_pi = initial_pi.copy()
restricted_pi[1, 1] = 0
nevo_problem.solve(

initial_sigma,
restricted_pi,
optimization=tighter_bfgs,
method='1s'

)

[16]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
1 +1.5E+01 +5.2E-06 +4.7E-02 +1.7E+04 0 +6.9E+07 +5.7E+05

=======================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations

(continues on next page)

4.2.
R

andom
C

oefficients
LogitTutorialw

ith
the

Fake
C

erealD
ata

47



P
yB

LP,R
elease

1.1.0

(continued from previous page)

----------- --------- ------------ ----------- ----------- -----------
00:00:53 Yes 34 40 34390 106492

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
=====================================================================================================================
Sigma: 1 prices sugar mushy | Pi: income income_squared age child
------ ---------- ---------- ---------- ---------- | ------ ---------- -------------- ---------- ----------

1 +3.7E-01 | 1 +3.1E+00 +0.0E+00 +1.2E+00 +0.0E+00
(+1.2E-01) | (+1.1E+00) (+1.0E+00)

|
prices +0.0E+00 +1.8E+00 | prices +4.2E+00 +0.0E+00 +0.0E+00 +1.2E+01

(+9.2E-01) | (+4.6E+00) (+5.2E+00)
|

sugar +0.0E+00 +0.0E+00 -4.4E-03 | sugar -1.9E-01 +0.0E+00 +2.8E-02 +0.0E+00
(+1.2E-02) | (+3.5E-02) (+3.2E-02)

|
mushy +0.0E+00 +0.0E+00 +0.0E+00 +8.6E-02 | mushy +1.5E+00 +0.0E+00 -1.5E+00 +0.0E+00

(+1.9E-01) | (+6.5E-01) (+1.1E+00)
=====================================================================================================================

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-3.2E+01

(+2.3E+00)
==========

Now we’ll drop both income_squared and the corresponding column in Π0.

[17]: restricted_formulation = pyblp.Formulation('0 + income + age + child')
deleted_pi = np.delete(initial_pi, 1, axis=1)
restricted_problem = pyblp.Problem(

product_formulations,
product_data,
restricted_formulation,
agent_data

)
restricted_problem.solve(

(continues on next page)
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initial_sigma,
deleted_pi,
optimization=tighter_bfgs,
method='1s'

)

[17]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
1 +1.5E+01 +5.2E-06 +4.7E-02 +1.7E+04 0 +6.9E+07 +5.7E+05

=======================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:00:55 Yes 34 40 34371 106443

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
=====================================================================================================
Sigma: 1 prices sugar mushy | Pi: income age child
------ ---------- ---------- ---------- ---------- | ------ ---------- ---------- ----------

1 +3.7E-01 | 1 +3.1E+00 +1.2E+00 +0.0E+00
(+1.2E-01) | (+1.1E+00) (+1.0E+00)

|
prices +0.0E+00 +1.8E+00 | prices +4.2E+00 +0.0E+00 +1.2E+01

(+9.2E-01) | (+4.6E+00) (+5.2E+00)
|

sugar +0.0E+00 +0.0E+00 -4.4E-03 | sugar -1.9E-01 +2.8E-02 +0.0E+00
(+1.2E-02) | (+3.5E-02) (+3.2E-02)

|
mushy +0.0E+00 +0.0E+00 +0.0E+00 +8.6E-02 | mushy +1.5E+00 -1.5E+00 +0.0E+00

(+1.9E-01) | (+6.5E-01) (+1.1E+00)
=====================================================================================================

Beta Estimates (Robust SEs in Parentheses):
==========

(continues on next page)
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prices
----------
-3.2E+01

(+2.3E+00)
==========

The parameter estimates and standard errors are identical for both approaches. Based on the number of fixed point iterations, there is some evidence that the solver
took a slightly different path for each problem, but both restricted problems arrived at identical answers. The Π̂12 interaction term is still insignificant.
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The online version of the following section may be easier to read.

4.3 Supply Side Tutorial with Automobile Data

[1]: import pyblp
import numpy as np
import pandas as pd

pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__

[1]: '1.1.0'

In this tutorial, we’ll use data from Berry, Levinsohn, and Pakes (1995) to solve the paper’s automobile problem. This tutorial is similar to the fake cereal tutorial,
but exhibits some other features of pyblp:

• Incorporating a supply side into demand estimation.

• Allowing for simple price-income demographic effects.

• Calculating clustered standard errors.

4.3.1 Loading Data

We’ll use pandas to load two sets of data:

1. product_data, which contains prices, shares, and other product characteristics.

2. agent_data, which contains draws from the distribution of heterogeneity.

[2]: product_data = pd.read_csv(pyblp.data.BLP_PRODUCTS_LOCATION)
product_data.head()

[2]: market_ids clustering_ids car_ids firm_ids region shares prices \
0 1971 AMGREM71 129 15 US 0.001051 4.935802
1 1971 AMHORN71 130 15 US 0.000670 5.516049
2 1971 AMJAVL71 132 15 US 0.000341 7.108642

(continues on next page)
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3 1971 AMMATA71 134 15 US 0.000522 6.839506
4 1971 AMAMBS71 136 15 US 0.000442 8.928395

hpwt air mpd ... supply_instruments2 supply_instruments3 \
0 0.528997 0 1.888146 ... 0.0 1.705933
1 0.494324 0 1.935989 ... 0.0 1.680910
2 0.467613 0 1.716799 ... 0.0 1.801067
3 0.426540 0 1.687871 ... 0.0 1.818061
4 0.452489 0 1.504286 ... 0.0 1.933210

supply_instruments4 supply_instruments5 supply_instruments6 \
0 1.595656 87.0 -61.959985
1 1.490295 87.0 -61.959985
2 1.357703 87.0 -61.959985
3 1.261347 87.0 -61.959985
4 1.237365 87.0 -61.959985

supply_instruments7 supply_instruments8 supply_instruments9 \
0 0.0 46.060389 29.786989
1 0.0 46.060389 29.786989
2 0.0 46.060389 29.786989
3 0.0 46.060389 29.786989
4 0.0 46.060389 29.786989

supply_instruments10 supply_instruments11
0 0.0 1.888146
1 0.0 1.935989
2 0.0 1.716799
3 0.0 1.687871
4 0.0 1.504286

[5 rows x 33 columns]

The product_data contains market IDs, product IDs, firm IDs, shares, prices, a number of product characteristics, and instruments. The product IDs are called
clustering_ids because they will be used to compute clustered standard errors. For more information about the instruments and the example data as a whole,
refer to the data module.

The agent_data contains market IDs, integration weights 𝑤𝑖𝑡, integration nodes 𝜈𝑖𝑡, and demographics 𝑑𝑖𝑡. Here we use the 𝐼𝑡 = 200 importance sampling
weights and nodes from the original paper.

In non-example problems, it is usually a better idea to use many more draws, or a more sophisticated Integration configuration such as sparse grid quadrature.
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[3]: agent_data = pd.read_csv(pyblp.data.BLP_AGENTS_LOCATION)
agent_data.head()

[3]: market_ids weights nodes0 nodes1 nodes2 nodes3 nodes4 \
0 1971 0.000543 1.192188 0.478777 0.980830 -0.824410 2.473301
1 1971 0.000723 1.497074 -2.026204 -1.741316 1.412568 -0.747468
2 1971 0.000544 1.438081 0.813280 -1.749974 -1.203509 0.049558
3 1971 0.000701 1.768655 -0.177453 0.286602 0.391517 0.683669
4 1971 0.000549 0.849970 -0.135337 0.735920 1.036247 -1.143436

income
0 109.560369
1 45.457314
2 127.146548
3 22.604045
4 170.226032

4.3.2 Setting up the Problem

Unlike the fake cereal problem, we won’t absorb any fixed effects in the automobile problem, so the linear part of demand 𝑋1 has more components. We also need
to specify a formula for the random coefficients 𝑋2, including a random coefficient on the constant, which captures correlation among all inside goods.

The primary new addition to the model relative to the fake cereal problem is that we add a supply side formula for product characteristics that contribute to marginal
costs, 𝑋3. The patsy-style formulas support functions of regressors such as the log function used below.

We stack the three product formulations in order: 𝑋1, 𝑋2, and 𝑋3.

[4]: product_formulations = (
pyblp.Formulation('1 + hpwt + air + mpd + space'),
pyblp.Formulation('1 + prices + hpwt + air + mpd + space'),
pyblp.Formulation('1 + log(hpwt) + air + log(mpg) + log(space) + trend')

)
product_formulations

[4]: (1 + hpwt + air + mpd + space,
1 + prices + hpwt + air + mpd + space,
1 + log(hpwt) + air + log(mpg) + log(space) + trend)

The original specification for the automobile problem includes the term log(𝑦𝑖 − 𝑝𝑗), in which 𝑦 is income and 𝑝 are prices. Instead of including this term, which
gives rise to a host of numerical problems, we’ll follow Berry, Levinsohn, and Pakes (1999) and use its first-order linear approximation, 𝑝𝑗/𝑦𝑖.
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The agent formulation for demographics, 𝑑, includes a column of 1/𝑦𝑖 values, which we’ll interact with 𝑝𝑗 . To do this, we will treat draws of 𝑦𝑖 as demographic
variables.

[5]: agent_formulation = pyblp.Formulation('0 + I(1 / income)')
agent_formulation

[5]: I(1 / income)

As in the cereal example, the Problem can be constructed by combining the product_formulations, product_data, agent_formulation, and
agent_data. We’ll also choose the functional form of marginal costs 𝑐𝑗𝑡. A linear marginal cost specification is the default setting, so we’ll need to use the
costs_type argument of Problem to employ the log-linear specification used by Berry, Levinsohn, and Pakes (1995).

When initializing the problem, we get a warning about integration weights not summing to one. This is because the above product data were created by the original
paper with importance sampling. To disable this warning, we could increase pyblp.options.weights_tol.

[6]: problem = pyblp.Problem(product_formulations, product_data, agent_formulation, agent_data, costs_type='log')
problem

Integration weights in the following markets sum to a value that differs from 1 by more than options.weights_tol: all
→˓markets. Sometimes this is fine, for example when weights were built with importance sampling. Otherwise, it is a
→˓sign that there is a data problem.

[6]: Dimensions:
=======================================================
T N F I K1 K2 K3 D MD MS

--- ---- --- ---- ---- ---- ---- --- ---- ----
20 2217 26 4000 5 6 6 1 13 18
=======================================================

Formulations:
=======================================================================================

Column Indices: 0 1 2 3 4 5
----------------------------- ---------- --------- ---- -------- ---------- -----
X1: Linear Characteristics 1 hpwt air mpd space

X2: Nonlinear Characteristics 1 prices hpwt air mpd space
X3: Log Cost Characteristics 1 log(hpwt) air log(mpg) log(space) trend

d: Demographics 1*1/income
=======================================================================================

The problem outputs a table of dimensions:

• 𝑇 denotes the number of markets.

• 𝑁 is the length of the dataset (the number of products across all markets).

54
C

hapter
4.

Tutorial



P
yB

LP,R
elease

1.1.0

• 𝐹 denotes the number of firms.

• 𝐼 =
∑︀

𝑡 𝐼𝑡 is the total number of agents across all markets (200 draws per market times 20 markets).

• 𝐾1 is the number of linear demand characteristics.

• 𝐾2 is the number of nonlinear demand characteristics.

• 𝐾3 is the number of linear supply characteristics.

• 𝐷 is the number of demographic variables.

• 𝑀𝐷 is the number of demand instruments, including exogenous regressors.

• 𝑀𝑆 is the number of supply instruments, including exogenous regressors.

The formulations table describes all four formulas for demand-side linear characteristics, demand-side nonlinear characteristics, supply-side characteristics, and
demographics.

4.3.3 Solving the Problem

The only remaining decisions are:

• Choosing Σ and Π starting values, Σ0 and Π0.

• Potentially choosing bounds for Σ and Π.

The decisions we will use are:

• Use published estimates as our starting values in Σ0.

• Interact the inverse of income, 1/𝑦𝑖, only with prices, and use the published estimate on log(𝑦𝑖 − 𝑝𝑗) as our starting value for 𝛼 in Π0.

• Bound Σ0 to be positive since it is a diagonal matrix where the diagonal consists of standard deviations.

When using a routine that supports bounds, it’s usually a good idea to set your own more bounds so that the routine doesn’t try out large parameter values that
create numerical issues.

[7]: initial_sigma = np.diag([3.612, 0, 4.628, 1.818, 1.050, 2.056])
initial_pi = np.c_[[0, -43.501, 0, 0, 0, 0]]

Note that there are only 5 nonzeros on the diagonal of Σ, which means that we only need 5 columns of integration nodes to integrate over these 5 dimensions of
unobserved heterogeneity. Indeed, agent_data contains exactly 5 columns of nodes. If we were to ignore the log(𝑦𝑖 − 𝑝𝑗) term (by not configuring Π) and
include a term on prices in Σ instead, we would have needed 6 columns of integration nodes in our agent_data.
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A downside of the log-linear marginal costs specification is that nonpositive estimated marginal costs can create problems for the optimization routine when
computing log 𝑐(𝜃). We’ll use the costs_bounds argument to bound marginal costs from below by a small number.

Finally, as in the original paper, we’ll use W_type and se_type to cluster by product IDs, which were specified as clustering_ids in product_data,
and set initial_update=True to update the initial GMM weighting matrix and the mean utility at the starting parameter values.

[8]: results = problem.solve(
initial_sigma,
initial_pi,
costs_bounds=(0.001, None),
W_type='clustered',
se_type='clustered',
initial_update=True,

)
results

[8]: Problem Results Summary:
=======================================================================================================================
GMM Objective Projected Reduced Hessian Reduced Hessian Clipped Clipped Weighting Matrix Covariance Matrix
Step Value Gradient Norm Min Eigenvalue Max Eigenvalue Shares Costs Condition Number Condition Number
---- --------- ------------- --------------- --------------- ------- ------- ---------------- -----------------
2 +5.0E+02 +1.1E-08 +4.9E-01 +5.1E+02 0 0 +4.2E+09 +3.8E+08

=======================================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:10:14 No 58 126 36807 112905

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs Adjusted for 999 Clusters in Parentheses):
===================================================================================================
Sigma: 1 prices hpwt air mpd space | Pi: 1*1/income
------ ---------- -------- ---------- ---------- ---------- ---------- | ------ ----------

1 +2.0E+00 | 1 +0.0E+00
(+6.1E+00) |

|
prices +0.0E+00 +0.0E+00 | prices -4.5E+01

| (+9.2E+00)
|

(continues on next page)
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(continued from previous page)

hpwt +0.0E+00 +0.0E+00 +6.1E+00 | hpwt +0.0E+00
(+2.2E+00) |

|
air +0.0E+00 +0.0E+00 +0.0E+00 +4.0E+00 | air +0.0E+00

(+2.1E+00) |
|

mpd +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +2.5E-01 | mpd +0.0E+00
(+5.5E-01) |

|
space +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +1.9E+00 | space +0.0E+00

(+1.1E+00) |
===================================================================================================

Beta Estimates (Robust SEs Adjusted for 999 Clusters in Parentheses):
==========================================================

1 hpwt air mpd space
---------- ---------- ---------- ---------- ----------
-7.3E+00 +3.5E+00 -1.0E+00 +4.2E-01 +4.2E+00

(+2.8E+00) (+1.4E+00) (+2.1E+00) (+2.5E-01) (+6.6E-01)
==========================================================

Gamma Estimates (Robust SEs Adjusted for 999 Clusters in Parentheses):
======================================================================

1 log(hpwt) air log(mpg) log(space) trend
---------- ---------- ---------- ---------- ---------- ----------
+2.8E+00 +9.0E-01 +4.2E-01 -5.2E-01 -2.6E-01 +2.7E-02

(+1.2E-01) (+7.2E-02) (+8.7E-02) (+7.3E-02) (+2.1E-01) (+3.1E-03)
======================================================================

There are some discrepancies between our results and the original paper, but results are similar.
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The online version of the following section may be easier to read.

4.4 Micro Moments Tutorial with Automobile Data

[1]: from IPython.display import display, HTML
display(HTML("<style>pre { white-space: pre !important; }</style>"))

import pyblp
import numpy as np
import pandas as pd

pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__

<IPython.core.display.HTML object>

[1]: '1.1.0'

In this tutorial, we’ll use data from Petrin (2002) to solve the paper’s automobile problem. This tutorial is similar to the first automobile tutorial, but exhibits how
to incorporate micro moments into estimation.

4.4.1 Loading Data

We’ll use pandas to load two sets of data:

1. product_data, which contains prices, shares, and other product characteristics.

2. agent_data, which contains draws from the distribution of heterogeneity.

[2]: product_data = pd.read_csv(pyblp.data.PETRIN_PRODUCTS_LOCATION)
product_data.head()

[2]: market_ids clustering_ids firm_ids region jp eu q households \
0 1981 1 7 EU 0 1 18.647 83527
1 1981 2 7 EU 0 1 17.611 83527
2 1981 2 7 EU 0 1 6.139 83527
3 1981 3 7 EU 0 1 2.553 83527

(continues on next page)

58
C

hapter
4.

Tutorial

https://pyblp.readthedocs.io/en/latest/_notebooks/tutorial/petrin.html
https://pandas.pydata.org/


P
yB

LP,R
elease

1.1.0

(continued from previous page)

4 1981 4 15 US 0 0 43.198 83527

shares prices ... supply_instruments6 supply_instruments7 \
0 0.000223 10.379538 ... 9.0 0.0
1 0.000211 13.140814 ... 9.0 0.0
2 0.000073 19.746975 ... 9.0 0.0
3 0.000031 13.085809 ... 9.0 0.0
4 0.000517 6.660066 ... 0.0 0.0

supply_instruments8 supply_instruments9 supply_instruments10 \
0 0.0 144.0 -151.682461
1 0.0 144.0 -151.682461
2 0.0 144.0 -151.682461
3 0.0 144.0 -151.682461
4 0.0 149.0 -157.647246

supply_instruments11 supply_instruments12 supply_instruments13 \
0 108.724278 30.0 32.0
1 108.724278 30.0 32.0
2 108.724278 30.0 32.0
3 108.724278 30.0 32.0
4 114.055507 30.0 35.0

supply_instruments14 supply_instruments15
0 32.0 460.419731
1 32.0 460.419731
2 32.0 460.419731
3 32.0 460.419731
4 42.0 467.806186

[5 rows x 62 columns]

The product_data contains market IDs, product IDs, firm IDs, shares, prices, a number of product characteristics, and instruments. The product IDs are called
clustering_ids because they will be used to compute clustered standard errors. For more information about the instruments and the example data as a whole,
refer to the data module.

The agent_data contains market IDs, integration weights 𝑤𝑖𝑡, integration nodes 𝜈𝑖𝑡, and demographics 𝑑𝑖𝑡. Here we use 𝐼𝑡 = 1000 scrambled Halton draws in
each market, along with demographics resampled from the Consumer Expenditure Survey (CEX) used by the original paper. These draws are slightly different from
those used in the original paper (pseudo Monte Carlo draws and importance sampling). Note that following the original paper, the integration nodes are actually
draws from a truncated 𝜒2(3) distribution, rather than the more typical 𝑁(0, 1) draws that we have seen in prior tutorials.

4.4.
M

icro
M

om
ents

Tutorialw
ith

A
utom

obile
D

ata
59



P
yB

LP,R
elease

1.1.0

[3]: agent_data = pd.read_csv(pyblp.data.PETRIN_AGENTS_LOCATION)
agent_data.head()

[3]: market_ids weights nodes0 nodes1 nodes2 nodes3 nodes4 \
0 1981 0.001 2.533314 7.496742 2.649343 3.892549 0.833761
1 1981 0.001 4.422582 0.858539 1.646447 2.973352 0.033288
2 1981 0.001 1.341509 5.041918 4.118932 2.166338 1.314582
3 1981 0.001 3.324113 2.354892 0.802351 0.261043 3.911970
4 1981 0.001 1.895857 1.807990 1.827797 4.080565 1.709768

nodes5 fv income low mid high fs age
0 1.928344 0.749785 10.346577 1 0 0 4 1
1 1.683242 5.232336 13.944210 0 1 0 2 1
2 0.360087 1.860212 5.898788 1 0 0 4 0
3 1.027856 6.980909 8.125445 1 0 0 2 0
4 0.707514 2.450663 34.397295 0 0 1 2 1

4.4.2 Setting up the Problem

The problem configuration is based on that of the first automobile problem. It is very similar, with both demand and supply sides, although with a few more product
characteristics.

Again, we stack the three product formulations in order: 𝑋1, 𝑋2, and 𝑋3.

[4]: product_formulations = (
pyblp.Formulation('1 + hpwt + space + air + mpd + fwd + mi + sw + su + pv + pgnp + trend + trend2'),
pyblp.Formulation('1 + I(-prices) + hpwt + space + air + mpd + fwd + mi + sw + su + pv'),
pyblp.Formulation('1 + log(hpwt) + log(wt) + log(mpg) + air + fwd + trend * (jp + eu) + log(q)'),

)
product_formulations

[4]: (1 + hpwt + space + air + mpd + fwd + mi + sw + su + pv + pgnp + trend + trend2,
1 + I(-prices) + hpwt + space + air + mpd + fwd + mi + sw + su + pv,
1 + log(hpwt) + log(wt) + log(mpg) + air + fwd + trend + jp + eu + trend:jp + trend:eu + log(q))

Again, we’ll use a first-order linear approximation to log(𝑦𝑖 − 𝑝𝑗), in which 𝑦 is income and 𝑝 are prices. Unlike the previous automobile problem, however, we’ll
allow its coefficient to vary for low- mid- and high-income consumers.

As in the original paper, we’ll also include 𝑙𝑜𝑔(fs𝑖) × fv𝑖 where fs𝑖 is family size and fv𝑖 is another truncated 𝜒2(3) draw. Finally, to help with constructing micro
moments below, we’ll also include various additional demographics in the agent formulation.
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[5]: agent_formulation = pyblp.Formulation('1 + I(low / income) + I(mid / income) + I(high / income) + I(log(fs) * fv) + age
→˓+ fs + mid + high')
agent_formulation

[5]: 1 + I(low / income) + I(mid / income) + I(high / income) + I(log(fs) * fv) + age + fs + mid + high

The Problem can again be constructed by combining the product_formulations, product_data, agent_formulation, and agent_data. We’ll
again choose a log-linear specification for marginal costs 𝑐𝑗𝑡.

[6]: problem = pyblp.Problem(product_formulations, product_data, agent_formulation, agent_data, costs_type='log')
problem

[6]: Dimensions:
========================================================
T N F I K1 K2 K3 D MD MS

--- ---- --- ----- ---- ---- ---- --- ---- ----
13 2407 27 13000 13 11 12 9 35 28
========================================================

Formulations:
==============================================================================================================================================

Column Indices: 0 1 2 3 4 5 6 7 8 9
→˓ 10 11 12
----------------------------- --- ---------- ---------- ----------- ---------- --- ----- --- ---- -------- --
→˓------ ------ ------
X1: Linear Characteristics 1 hpwt space air mpd fwd mi sw su pv
→˓pgnp trend trend2
X2: Nonlinear Characteristics 1 -prices hpwt space air mpd fwd mi sw su
→˓ pv
X3: Log Cost Characteristics 1 log(hpwt) log(wt) log(mpg) air fwd trend jp eu jp*trend
→˓eu*trend log(q)

d: Demographics 1 low/income mid/income high/income fv*log(fs) age fs mid high
==============================================================================================================================================

The problem outputs a table of dimensions:

• 𝑇 denotes the number of markets.

• 𝑁 is the length of the dataset (the number of products across all markets).

• 𝐹 denotes the number of firms.

• 𝐼 =
∑︀

𝑡 𝐼𝑡 is the total number of agents across all markets (1000 draws per market times 13 markets).
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• 𝐾1 is the number of linear demand characteristics.

• 𝐾2 is the number of nonlinear demand characteristics.

• 𝐾3 is the number of linear supply characteristics.

• 𝐷 is the number of demographic variables.

• 𝑀𝐷 is the number of demand instruments, including exogenous regressors.

• 𝑀𝑆 is the number of supply instruments, including exogenous regressors.

The formulations table describes all four formulas for demand-side linear characteristics, demand-side nonlinear characteristics, supply-side characteristics, and
demographics.

4.4.3 Setting up Micro Moments

Next, we will configure the micro moments that we will be adding to the problem. For background and notation involving micro moments, see Micro Moments.

Specifically, we will be adding a few more moments that match key statistics computed from the CEX survey of potential automobile consumers. For a tutorial
on how to compute optimal micro moments that use all the information in a full micro dataset linking individual choices to demographics, see the post estimation
tutorial.

To start, we will have to define a MicroDataset configuration that contains metadata about the micro dataset/survey. These metadata include a unique name for the
dataset indexed by 𝑑, the number of observations 𝑁𝑑, a function that defines survey weights 𝑤𝑑𝑖𝑗𝑡, and if relevant, a subset of markets from which the micro data
was sampled.

[7]: micro_dataset = pyblp.MicroDataset(
name="CEX",
observations=29125,
compute_weights=lambda t, p, a: np.ones((a.size, 1 + p.size)),

)
micro_dataset

[7]: CEX: 29125 Observations in All Markets

We called the dataset “CEX”, defined the number of observations in it, and also defined a lambda function for computing survey weights in a market. The
compute_weights function has three arguments: the current market’s ID 𝑡, the 𝐽𝑡 Products inside the market, and the 𝐼𝑡 Agents inside the market. In this case,
we are assuming that each product and agent/consumer type are sampled with equal probability, so we simply return a matrix of ones of shape 𝐼𝑡 × (1 + 𝐽𝑡). This
sets each 𝑤𝑑𝑖𝑗𝑡 = 1.

By using 1 + 𝐽𝑡 instead of 𝐽𝑡, we are specifying that the micro dataset contains observations of the outside option 𝑗 = 0. If we instead specified a matrix of shape
𝐼𝑡 × 𝐽𝑡, this would be the same as setting the first column equal to all zeros, so that outside choices are not sampled from.
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We will be matching a few different statistics that were computed from this survey. For convenience, they are packaged in a data file with pyblp.

[8]: micro_statistics = pd.read_csv(pyblp.data.PETRIN_VALUES_LOCATION, index_col=0)
micro_statistics

[8]: value
E[age | mi] 0.7830
E[fs | mi] 3.8600
E[age | sw] 0.7300
E[fs | sw] 3.1700
E[age | su] 0.7400
E[fs | su] 2.9700
E[age | pv] 0.6520
E[fs | pv] 3.4700
E[new | mid] 0.0794
E[new | high] 0.1581

We will match the average age and family size (“fs”) conditional on purchasing a minivan (“mi”), station wagon (“sw”), sport-utility (“su”), and full-size passenger
van (“pv”). We will also match the probability that a consumer actually purchases a new vehicle, conditional on them being mid- and high-income.

Each of these statistics is a conditional expectation, which we can rewrite as a ration of unconditional expectations over all consumers. Each of these unconditional
expectations is called a MicroPart (used to form full micro moments), which we will now configure.

Each micro part is an average/expectation in the sample/population over micro values 𝑣𝑝𝑖𝑗𝑡. To match the above micro values, we will need averages/expectations
over interactions between agent/family size and dummies for purchasing the different automobile types. These will form the numerators in our conditional
expectations.

[9]: age_mi_part = pyblp.MicroPart(
name="E[age_i * mi_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 7]]),

)
age_sw_part = pyblp.MicroPart(

name="E[age_i * sw_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 8]]),

)
age_su_part = pyblp.MicroPart(

name="E[age_i * su_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 9]]),

)

(continues on next page)
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(continued from previous page)

age_pv_part = pyblp.MicroPart(
name="E[age_i * pv_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 5], np.r_[0, p.X2[:, 10]]),

)
fs_mi_part = pyblp.MicroPart(

name="E[fs_i * mi_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 7]]),

)
fs_sw_part = pyblp.MicroPart(

name="E[fs_i * sw_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 8]]),

)
fs_su_part = pyblp.MicroPart(

name="E[fs_i * su_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 9]]),

)
fs_pv_part = pyblp.MicroPart(

name="E[fs_i * pv_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 6], np.r_[0, p.X2[:, 10]]),

)

We will also need the denominators, which are simple averages/expectations of purchasing the different types of automobiles.

[10]: mi_part = pyblp.MicroPart(
name="E[mi_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 7]]),

)
sw_part = pyblp.MicroPart(

name="E[sw_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 8]]),

)
su_part = pyblp.MicroPart(

name="E[su_j]",

(continues on next page)
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(continued from previous page)

dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 9]]),

)
pv_part = pyblp.MicroPart(

name="E[pv_j]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 0], np.r_[0, p.X2[:, 10]]),

)

To form our probability that a consumer actually purchases a new vehicle, conditional on them being mid- and high-income, we will also need the following micro
parts.

[11]: inside_mid_part = pyblp.MicroPart(
name="E[1{j > 0} * mid_i]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 7], np.r_[0, p.X2[:, 0]]),

)
inside_high_part = pyblp.MicroPart(

name="E[1{j > 0} * high_i]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 8], np.r_[0, p.X2[:, 0]]),

)
mid_part = pyblp.MicroPart(

name="E[mid_i]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 7], np.r_[1, p.X2[:, 0]]),

)
high_part = pyblp.MicroPart(

name="E[high_i]",
dataset=micro_dataset,
compute_values=lambda t, p, a: np.outer(a.demographics[:, 8], np.r_[1, p.X2[:, 0]]),

)

Finally, we’ll put these micro parts together into MicroMoments. Each micro moment is configured to have a name, a value (one of the statistics above), and micro
parts that go into it.

If our micro moments were simple unconditional expectations, we could just pass a single micro part to each micro moment and be done. However, since our micro
moments are functions of multiple micro parts, we have to specify this function. We also have to specify its derivative for computing standard errors and analytic
objective gradients.
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[12]: compute_ratio = lambda v: v[0] / v[1]
compute_ratio_gradient = lambda v: [1 / v[1], -v[0] / v[1]**2]

Given our functions that define a conditional expectation and its derivatives, we can form our micro moments.

[13]: micro_moments = [
pyblp.MicroMoment(

name="E[age_i | mi_j]",
value=0.783,
parts=[age_mi_part, mi_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
pyblp.MicroMoment(

name="E[age_i | sw_j]",
value=0.730,
parts=[age_sw_part, sw_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
pyblp.MicroMoment(

name="E[age_i | su_j]",
value=0.740,
parts=[age_su_part, su_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
pyblp.MicroMoment(

name="E[age_i | pv_j]",
value=0.652,
parts=[age_pv_part, pv_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
pyblp.MicroMoment(

name="E[fs_i | mi_j]",
value=3.86,
parts=[fs_mi_part, mi_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),

(continues on next page)
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(continued from previous page)

pyblp.MicroMoment(
name="E[fs_i | sw_j]",
value=3.17,
parts=[fs_sw_part, sw_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
pyblp.MicroMoment(

name="E[fs_i | su_j]",
value=2.97,
parts=[fs_su_part, su_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
pyblp.MicroMoment(

name="E[fs_i | pv_j]",
value=3.47,
parts=[fs_pv_part, pv_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
pyblp.MicroMoment(

name="E[1{j > 0} | mid_i]",
value=0.0794,
parts=[inside_mid_part, mid_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
pyblp.MicroMoment(

name="E[1{j > 0} | high_i]",
value=0.1581,
parts=[inside_high_part, high_part],
compute_value=compute_ratio,
compute_gradient=compute_ratio_gradient,

),
]
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4.4.4 Solving the Problem

Like for the first automobile problem, here will will just use the publisehd estimates for Σ and Π starting values.

[14]: initial_sigma = np.diag([3.23, 0, 4.43, 0.46, 0.01, 2.58, 4.42, 0, 0, 0, 0])
initial_pi = np.array([

[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 7.52, 31.13, 34.49, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0.57, 0, 0, 0, 0],
[0, 0, 0, 0, 0.28, 0, 0, 0, 0],
[0, 0, 0, 0, 0.31, 0, 0, 0, 0],
[0, 0, 0, 0, 0.42, 0, 0, 0, 0],

])

Finally, as in the original paper, we’ll use W_type and se_type to cluster by product IDs, which were specified as clustering_ids in product_data. We
will use a simple BFGS optimization routine and slightly loosen the default tolerance of our inner SQUAREM iteration algorithm from 1e-14 to 1e-13 because
the tighter tolerance tended to lead to convergence failures for this problem. We also pass our configured micro_moments when solving the problem.

[15]: results = problem.solve(
sigma=initial_sigma,
pi=initial_pi,
optimization=pyblp.Optimization('bfgs', {'gtol': 1e-4}),
iteration=pyblp.Iteration('squarem', {'atol': 1e-13}),
se_type='clustered',
W_type='clustered',
micro_moments=micro_moments,

)
results

[15]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
2 +1.8E+02 +4.3E-05 +3.8E-01 +1.3E+03 0 +2.8E+11 +8.1E+07

=======================================================================================================

(continues on next page)

68
C

hapter
4.

Tutorial



P
yB

LP,R
elease

1.1.0

(continued from previous page)

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:34:10 Yes 72 87 10905 33592

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs Adjusted for 898 Clusters in Parentheses):
================================================================================================================================================================================================================================================
Sigma: 1 -prices hpwt space air mpd fwd mi sw su
→˓ pv | Pi: 1 low/income mid/income high/income fv*log(fs) age fs mid high
------- ---------- -------- ---------- ---------- ---------- ---------- ---------- -------- -------- --------
→˓ -------- | ------- -------- ---------- ---------- ----------- ---------- -------- -------- -------- ------
→˓--

1 +3.0E-02
→˓ | 1 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

(+5.3E-01)
→˓ |

→˓ |
-prices +0.0E+00 +0.0E+00
→˓ | -prices +0.0E+00 +3.9E+00 +1.2E+01 +2.4E+01 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

→˓ | (+3.6E-01) (+1.0E+00) (+2.4E+00)

→˓ |
hpwt +0.0E+00 +0.0E+00 +1.2E-01
→˓ | hpwt +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

(+8.1E-01)
→˓ |

→˓ |
space +0.0E+00 +0.0E+00 +0.0E+00 -9.2E-02
→˓ | space +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

(+6.1E-01)
→˓ | (continues on next page)

4.4.
M

icro
M

om
ents

Tutorialw
ith

A
utom

obile
D

ata
69



P
yB

LP,R
elease

1.1.0

(continued from previous page)

→˓ |
air +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 -1.3E+00

→˓ | air +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

(+1.1E+00)
→˓ |

→˓ |
mpd +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 -1.6E-01

→˓ | mpd +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

(+2.2E-01)
→˓ |

→˓ |
fwd +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +1.6E+00

→˓ | fwd +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

(+3.7E-01)
→˓ |

→˓ |
mi +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00

→˓ | mi +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +4.2E-01 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

→˓ | (+5.2E-02)

→˓ |
sw +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00

→˓ | sw +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +1.7E-01 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

→˓ | (+4.2E-02)

→˓ |
su +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00

→˓ | su +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +1.0E-01 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

(continues on next page)
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→˓ | (+5.2E-02)

→˓ |
pv +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00

→˓ +0.0E+00 | pv +0.0E+00 +0.0E+00 +0.0E+00 +0.0E+00 +2.5E-01 +0.0E+00 +0.0E+00 +0.0E+00 +0.
→˓0E+00

→˓ | (+8.1E-02)
================================================================================================================================================================================================================================================

Beta Estimates (Robust SEs Adjusted for 898 Clusters in Parentheses):
==========================================================================================================================================================

1 hpwt space air mpd fwd mi sw su pv
→˓ pgnp trend trend2
---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
→˓---------- ---------- ----------
-8.9E+00 +8.3E+00 +4.9E+00 +3.8E+00 -1.4E-01 -6.5E+00 -2.1E+00 -1.3E+00 -1.1E+00 -3.3E+00
→˓ +3.4E-02 +2.2E-01 -1.5E-02
(+1.4E+00) (+2.4E+00) (+1.6E+00) (+1.2E+00) (+3.2E-01) (+1.8E+00) (+4.8E-01) (+2.0E-01) (+2.8E-01) (+5.2E-01)
→˓(+1.2E-02) (+9.2E-02) (+6.4E-03)
==========================================================================================================================================================

Gamma Estimates (Robust SEs Adjusted for 898 Clusters in Parentheses):
==============================================================================================================================================

1 log(hpwt) log(wt) log(mpg) air fwd trend jp eu jp*trend
→˓ eu*trend log(q)
---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ---------- ----------
→˓---------- ----------
+1.4E+00 +8.8E-01 +1.4E+00 +1.2E-01 +2.7E-01 +6.9E-02 -1.2E-02 +1.0E-01 +4.6E-01 +1.6E-03
→˓ -1.1E-02 -6.9E-02
(+1.4E-01) (+4.9E-02) (+8.0E-02) (+6.0E-02) (+2.4E-02) (+1.8E-02) (+2.6E-03) (+2.5E-02) (+4.3E-02) (+2.9E-03)
→˓(+4.2E-03) (+6.7E-03)
==============================================================================================================================================

Estimated Micro Moments:
===========================================================================================================
Observed Estimated Difference Moment Part Dataset Observations Markets
-------- --------- ---------- -------------------- -------------------- ------- ------------ -------
+7.8E-01 +7.5E-01 +2.9E-02 E[age_i | mi_j] E[age_i * mi_j] CEX 29125 All

(continues on next page)
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E[mi_j] CEX 29125 All
+7.3E-01 +6.8E-01 +4.7E-02 E[age_i | sw_j] E[age_i * sw_j] CEX 29125 All

E[sw_j] CEX 29125 All
+7.4E-01 +6.8E-01 +5.9E-02 E[age_i | su_j] E[age_i * su_j] CEX 29125 All

E[su_j] CEX 29125 All
+6.5E-01 +7.3E-01 -7.7E-02 E[age_i | pv_j] E[age_i * pv_j] CEX 29125 All

E[pv_j] CEX 29125 All
+3.9E+00 +3.9E+00 -1.2E-02 E[fs_i | mi_j] E[fs_i * mi_j] CEX 29125 All

E[mi_j] CEX 29125 All
+3.2E+00 +3.2E+00 -7.6E-03 E[fs_i | sw_j] E[fs_i * sw_j] CEX 29125 All

E[sw_j] CEX 29125 All
+3.0E+00 +3.0E+00 -8.5E-03 E[fs_i | su_j] E[fs_i * su_j] CEX 29125 All

E[su_j] CEX 29125 All
+3.5E+00 +3.5E+00 -1.7E-02 E[fs_i | pv_j] E[fs_i * pv_j] CEX 29125 All

E[pv_j] CEX 29125 All
+7.9E-02 +8.0E-02 -4.5E-04 E[1{j > 0} | mid_i] E[1{j > 0} * mid_i] CEX 29125 All

E[mid_i] CEX 29125 All
+1.6E-01 +1.6E-01 -2.1E-03 E[1{j > 0} | high_i] E[1{j > 0} * high_i] CEX 29125 All

E[high_i] CEX 29125 All
===========================================================================================================

There are some discrepances between these results and those in the original paper, but broadly estimates are similar. Although the estimates of 𝛽 looks substantially
off, this is primarily because the 𝜒2(3) distributions are not mean-zero, so differences in estimates of Σ results in shifted estimates of 𝛽 too.

4.4.5 Running the Main Counterfactual

One result that is very similar is the paper’s headline number: a $367.29 million compensating variation from a counterfactual that removes the minivan in 1984.
Using our estimates, we get a very similar number.

This subsection previews some of the routines used in the next tutorial on functions available after estimation. First, we will compute implied marginal costs in
1984.

[16]: year = 1984
costs_1984 = results.compute_costs(market_id=year)

Next, we will set up a counterfactual simulation in which the minivan is removed.

[17]: product_data_1984 = product_data[product_data['market_ids'] == year]
xi_1984 = results.xi[product_data['market_ids'] == year]

(continues on next page)
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agent_data_1984 = agent_data[agent_data['market_ids'] == year]
simulation = pyblp.Simulation(

product_formulations=product_formulations[:2],
product_data=product_data_1984[product_data_1984['mi'] == 0],
xi=xi_1984[product_data_1984['mi'] == 0],
agent_formulation=problem.agent_formulation,
agent_data=agent_data_1984,
beta=results.beta,
sigma=results.sigma,
pi=results.pi,

)

We will then solve for equilibrium prices and shares under this counterfactual, using the above-computed marginal costs.

[18]: simulation_results = simulation.replace_endogenous(costs=costs_1984[product_data_1984['mi'] == 0])

Finally, we will compute the change in consumer surplus.

[19]: households = product_data_1984['households'].values[0]
cs = households * results.compute_consumer_surpluses(market_id=year)
counterfactual_cs = households * simulation_results.compute_consumer_surpluses()
cs - counterfactual_cs

[19]: array([[425.90824856]])

We get an estimate that is in the same ballpark as $367.29 million. When bootstrapping this procedure (see the next tutorial for more on this), we get a standard
error around $250 million.
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The online version of the following section may be easier to read.

4.5 Post-Estimation Tutorial

[1]: %matplotlib inline

import pyblp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__

[1]: '1.1.0'

This tutorial covers several features of pyblp which are available after estimation including:

1. Calculating elasticities and diversion ratios.

2. Calculating marginal costs and markups.

3. Computing the effects of mergers: prices, shares, and HHI.

4. Using a parametric bootstrap to estimate standard errors.

5. Estimating optimal instruments.

6. Constructing optimal micro moments.

4.5.1 Problem Results

As in the fake cereal tutorial, we’ll first solve the fake cereal problem from Nevo (2000a). We load the fake data and estimate the model as in the previous tutorial.
We output the setup of the model to confirm we have correctly configured the Problem

[2]: product_data = pd.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION)
agent_data = pd.read_csv(pyblp.data.NEVO_AGENTS_LOCATION)

(continues on next page)
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product_formulations = (
pyblp.Formulation('0 + prices', absorb='C(product_ids)'),
pyblp.Formulation('1 + prices + sugar + mushy')

)
agent_formulation = pyblp.Formulation('0 + income + income_squared + age + child')
problem = pyblp.Problem(product_formulations, product_data, agent_formulation, agent_data)
problem

[2]: Dimensions:
=================================================
T N F I K1 K2 D MD ED

--- ---- --- ---- ---- ---- --- ---- ----
94 2256 5 1880 1 4 4 20 1
=================================================

Formulations:
===================================================================

Column Indices: 0 1 2 3
----------------------------- ------ -------------- ----- -----
X1: Linear Characteristics prices

X2: Nonlinear Characteristics 1 prices sugar mushy
d: Demographics income income_squared age child

===================================================================

We’ll solve the problem in the same way as before. The Problem.solve method returns a ProblemResults class, which displays basic estimation results. The results
that are displayed are simply formatted information extracted from various class attributes such as ProblemResults.sigma and ProblemResults.sigma_se.

[3]: initial_sigma = np.diag([0.3302, 2.4526, 0.0163, 0.2441])
initial_pi = [

[ 5.4819, 0, 0.2037, 0 ],
[15.8935, -1.2000, 0, 2.6342],
[-0.2506, 0, 0.0511, 0 ],
[ 1.2650, 0, -0.8091, 0 ]

]
results = problem.solve(

initial_sigma,
initial_pi,
optimization=pyblp.Optimization('bfgs', {'gtol': 1e-5}),
method='1s'

)
results
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[3]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
1 +4.6E+00 +6.9E-06 +3.3E-05 +1.6E+04 0 +6.9E+07 +8.4E+08

=======================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:01:16 Yes 51 57 46389 143977

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
=====================================================================================================================
Sigma: 1 prices sugar mushy | Pi: income income_squared age child
------ ---------- ---------- ---------- ---------- | ------ ---------- -------------- ---------- ----------

1 +5.6E-01 | 1 +2.3E+00 +0.0E+00 +1.3E+00 +0.0E+00
(+1.6E-01) | (+1.2E+00) (+6.3E-01)

|
prices +0.0E+00 +3.3E+00 | prices +5.9E+02 -3.0E+01 +0.0E+00 +1.1E+01

(+1.3E+00) | (+2.7E+02) (+1.4E+01) (+4.1E+00)
|

sugar +0.0E+00 +0.0E+00 -5.8E-03 | sugar -3.8E-01 +0.0E+00 +5.2E-02 +0.0E+00
(+1.4E-02) | (+1.2E-01) (+2.6E-02)

|
mushy +0.0E+00 +0.0E+00 +0.0E+00 +9.3E-02 | mushy +7.5E-01 +0.0E+00 -1.4E+00 +0.0E+00

(+1.9E-01) | (+8.0E-01) (+6.7E-01)
=====================================================================================================================

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-6.3E+01

(+1.5E+01)
==========

Additional post-estimation outputs can be computed with ProblemResults methods.

76
C

hapter
4.

Tutorial



P
yB

LP,R
elease

1.1.0

4.5.2 Elasticities and Diversion Ratios

We can estimate elasticities, 𝜀, and diversion ratios, D , with ProblemResults.compute_elasticities and ProblemResults.compute_diversion_ratios.

As a reminder, elasticities in each market are

𝜀𝑗𝑘 =
𝑥𝑘

𝑠𝑗

𝜕𝑠𝑗
𝜕𝑥𝑘

. (4.16)

Diversion ratios are

D𝑗𝑘 = −𝜕𝑠𝑘
𝜕𝑥𝑗

⧸︁ 𝜕𝑠𝑗
𝜕𝑥𝑗

. (4.17)

Following Conlon and Mortimer (2018), we report the diversion to the outside good 𝐷𝑗0 on the diagonal instead of 𝐷𝑗𝑗 = −1.

[4]: elasticities = results.compute_elasticities()
diversions = results.compute_diversion_ratios()

Post-estimation outputs are computed for each market and stacked. We’ll use matplotlib functions to display the matrices associated with a single market.

[5]: single_market = product_data['market_ids'] == 'C01Q1'
plt.colorbar(plt.matshow(elasticities[single_market]));
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[6]: plt.colorbar(plt.matshow(diversions[single_market]));
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The diagonal of the first image consists of own elasticities and the diagonal of the second image consists of diversion ratios to the outside good. As one might
expect, own price elasticities are large and negative while cross-price elasticities are positive but much smaller.

Elasticities and diversion ratios can be computed with respect to variables other than prices with the name argument of ProblemResults.compute_elasticities and
ProblemResults.compute_diversion_ratios. Additionally, ProblemResults.compute_long_run_diversion_ratios can be used to used to understand substitution when
products are eliminated from the choice set.

The convenience methods ProblemResults.extract_diagonals and ProblemResults.extract_diagonal_means can be used to extract information about own elasticities
of demand from elasticity matrices.

[7]: means = results.extract_diagonal_means(elasticities)

An alternative to summarizing full elasticity matrices is to use ProblemResults.compute_aggregate_elasticities to estimate aggregate elasticities of demand, 𝐸, in
each market, which reflect the change in total sales under a proportional sales tax of some factor.
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[8]: aggregates = results.compute_aggregate_elasticities(factor=0.1)

Since demand for an entire product category is generally less elastic than the average elasticity of individual products, mean own elasticities are generally larger in
magnitude than aggregate elasticities.

[9]: plt.hist(
[means.flatten(), aggregates.flatten()],
color=['red', 'blue'],
bins=50

);
plt.legend(['Mean Own Elasticities', 'Aggregate Elasticities']);
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4.5.3 Marginal Costs and Markups

To compute marginal costs, 𝑐, the product_data passed to Problem must have had a firm_ids field. Since we included firm IDs when configuring the
problem, we can use ProblemResults.compute_costs.

[10]: costs = results.compute_costs()
plt.hist(costs, bins=50);
plt.legend(["Marginal Costs"]);

Other methods that compute supply-side outputs often compute marginal costs themselves. For example, ProblemResults.compute_markups will compute marginal
costs when estimating markups, M , but computation can be sped up if we just use our pre-computed values.
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[11]: markups = results.compute_markups(costs=costs)
plt.hist(markups, bins=50);
plt.legend(["Markups"]);

4.5.4 Mergers

Before computing post-merger outputs, we’ll supplement our pre-merger markups with some other outputs. We’ll compute Herfindahl-Hirschman Indices, HHI,
with ProblemResults.compute_hhi; population-normalized gross expected profits, 𝜋, with ProblemResults.compute_profits; and population-normalized consumer
surpluses, CS, with ProblemResults.compute_consumer_surpluses.
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[12]: hhi = results.compute_hhi()
profits = results.compute_profits(costs=costs)
cs = results.compute_consumer_surpluses()

To compute post-merger outputs, we’ll create a new set of firm IDs that represent a merger of firms 2 and 1.

[13]: product_data['merger_ids'] = product_data['firm_ids'].replace(2, 1)

We can use ProblemResults.compute_approximate_prices or ProblemResults.compute_prices to estimate post-merger prices. The first method, which is in the spirit
of early approaches to merger evaluation such as Hausman, Leonard, and Zona (1994) and Werden (1997), is only a partial merger simulation in that it assumes
shares and their price derivatives are unaffected by the merger.

The second method, which is used by Nevo (2000b), is a full merger simulation in that it does not make these assumptions, and is the preferred approach to merger
simulation. By default, we iterate over the 𝜁-markup equation from Morrow and Skerlos (2011) to solve the full system of 𝐽𝑡 equations and 𝐽𝑡 unknowns in each
market 𝑡. We’ll use the latter, since it is fast enough for this example problem.

[14]: changed_prices = results.compute_prices(
firm_ids=product_data['merger_ids'],
costs=costs

)

We’ll compute post-merger shares with ProblemResults.compute_shares.

[15]: changed_shares = results.compute_shares(changed_prices)

Post-merger prices and shares are used to compute other post-merger outputs. For example, HHI increases.

[16]: changed_hhi = results.compute_hhi(
firm_ids=product_data['merger_ids'],
shares=changed_shares

)
plt.hist(changed_hhi - hhi, bins=50);
plt.legend(["HHI Changes"]);
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Markups, M , and profits, 𝜋, generally increase as well.

[17]: changed_markups = results.compute_markups(changed_prices, costs)
plt.hist(changed_markups - markups, bins=50);
plt.legend(["Markup Changes"]);
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[18]: changed_profits = results.compute_profits(changed_prices, changed_shares, costs)
plt.hist(changed_profits - profits, bins=50);
plt.legend(["Profit Changes"]);
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On the other hand, consumer surpluses, CS, generally decrease.

[19]: changed_cs = results.compute_consumer_surpluses(changed_prices)
plt.hist(changed_cs - cs, bins=50);
plt.legend(["Consumer Surplus Changes"]);
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4.5.5 Bootstrapping Results

Post-estimation outputs can be informative, but they don’t mean much without a sense sample-to-sample variability. One way to estimate confidence intervals for
post-estimation outputs is with a standard bootstrap procedure:

1. Construct a large number of bootstrap samples by sampling with replacement from the original product data.

2. Initialize and solve a Problem for each bootstrap sample.

3. Compute the desired post-estimation output for each bootstrapped ProblemResults and from the resulting empirical distribution, construct boostrap confidence
intervals.
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Although appealing because of its simplicity, the computational resources required for this procedure are often prohibitively expensive. Furthermore, human
oversight of the optimization routine is often required to determine whether the routine ran into any problems and if it successfully converged. Human oversight of
estimation for each bootstrapped problem is usually not feasible.

A more reasonable alternative is a parametric bootstrap procedure:

1. Construct a large number of draws from the estimated joint distribution of parameters.

2. Compute the implied mean utility, 𝛿, and shares, 𝑠, for each draw. If a supply side was estimated, also computed the implied marginal costs, 𝑐, and prices, 𝑝.

3. Compute the desired post-estimation output under each of these parametric bootstrap samples. Again, from the resulting empirical distribution, construct
boostrap confidence intervals.

Compared to the standard bootstrap procedure, the parametric bootstrap requires far fewer computational resources, and is simple enough to not require human
oversight of each bootstrap iteration. The primary complication to this procedure is that when supply is estimated, equilibrium prices and shares need to be
computed for each parametric bootstrap sample by iterating over the 𝜁-markup equation from Morrow and Skerlos (2011). Although nontrivial, this fixed point
iteration problem is much less demanding than the full optimization routine required to solve the BLP problem from the start.

An empirical distribution of results computed according to this parametric bootstrap procedure can be created with the ProblemResults.bootstrap method, which
returns a BootstrappedResults class that can be used just like ProblemResults to compute various post-estimation outputs. The difference is that BootstrappedResults
methods return arrays with an extra first dimension, along which bootstrapped results are stacked.

We’ll construct 90% parametric bootstrap confidence intervals for estimated mean own elasticities in each market of the fake cereal problem. Usually, bootstrapped
confidence intervals should be based on thousands of draws, but we’ll only use a few for the sake of speed in this example.

[20]: bootstrapped_results = results.bootstrap(draws=100, seed=0)
bootstrapped_results

[20]: Bootstrapped Results Summary:
======================
Computation Bootstrap

Time Draws
----------- ---------
00:00:09 100

======================

[21]: bounds = np.percentile(
bootstrapped_results.extract_diagonal_means(

bootstrapped_results.compute_elasticities()
),
q=[10, 90],
axis=0

)

(continues on next page)
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(continued from previous page)

table = pd.DataFrame(index=problem.unique_market_ids, data={
'Lower Bound': bounds[0].flatten(),
'Mean Own Elasticity': means.flatten(),
'Upper Bound': bounds[1].flatten()

})
table.round(2).head()

[21]: Lower Bound Mean Own Elasticity Upper Bound
C01Q1 -4.31 -4.21 -3.88
C01Q2 -4.07 -3.96 -3.68
C03Q1 -3.71 -3.40 -3.20
C03Q2 -3.65 -3.34 -3.16
C04Q1 -3.31 -3.15 -2.97

4.5.6 Optimal Instruments

Given a consistent estimate of 𝜃, we may want to compute the optimal instruments of Chamberlain (1987) and use them to re-solve the problem. Optimal instruments
have been shown, for example, by Reynaert and Verboven (2014), to reduce bias, improve efficiency, and enhance stability of BLP estimates.

The ProblemResults.compute_optimal_instruments method computes the expected Jacobians that comprise the optimal instruments by integrating over the density
of 𝜉 (and 𝜔 if a supply side was estimated). By default, the method approximates this integral by averaging over the Jacobian realizations computed under draws
from the asymptotic normal distribution of the error terms. Since this process is computationally expensive and often doesn’t make much of a difference, we’ll use
method='approximate' in this example to simply evaluate the Jacobians at the expected value of 𝜉, zero.

[22]: instrument_results = results.compute_optimal_instruments(method='approximate')
instrument_results

[22]: Optimal Instrument Results Summary:
=======================
Computation Error Term

Time Draws
----------- ----------
00:00:00 1

=======================

We can use the OptimalInstrumentResults.to_problem method to re-create the fake cereal problem with the estimated optimal excluded instruments.

[23]: updated_problem = instrument_results.to_problem()
updated_problem
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[23]: Dimensions:
=================================================
T N F I K1 K2 D MD ED

--- ---- --- ---- ---- ---- --- ---- ----
94 2256 5 1880 1 4 4 14 1
=================================================

Formulations:
===================================================================

Column Indices: 0 1 2 3
----------------------------- ------ -------------- ----- -----
X1: Linear Characteristics prices

X2: Nonlinear Characteristics 1 prices sugar mushy
d: Demographics income income_squared age child

===================================================================

We can solve this updated problem just like the original one. We’ll start at our consistent estimate of 𝜃.

[24]: updated_results = updated_problem.solve(
results.sigma,
results.pi,
optimization=pyblp.Optimization('bfgs', {'gtol': 1e-5}),
method='1s'

)
updated_results

[24]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
1 +8.0E-14 +3.0E-06 +1.6E-04 +2.9E+04 0 +7.8E+07 +1.8E+08

=======================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:01:05 Yes 42 50 45902 142164

===========================================================================

(continues on next page)
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(continued from previous page)

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
=====================================================================================================================
Sigma: 1 prices sugar mushy | Pi: income income_squared age child
------ ---------- ---------- ---------- ---------- | ------ ---------- -------------- ---------- ----------

1 +2.1E-01 | 1 +6.0E+00 +0.0E+00 +1.6E-01 +0.0E+00
(+7.8E-02) | (+5.2E-01) (+2.0E-01)

|
prices +0.0E+00 +3.0E+00 | prices +9.8E+01 -5.6E+00 +0.0E+00 +4.1E+00

(+6.5E-01) | (+8.6E+01) (+4.5E+00) (+2.2E+00)
|

sugar +0.0E+00 +0.0E+00 +2.7E-02 | sugar -3.1E-01 +0.0E+00 +4.9E-02 +0.0E+00
(+7.2E-03) | (+3.5E-02) (+1.3E-02)

|
mushy +0.0E+00 +0.0E+00 +0.0E+00 +3.0E-01 | mushy +9.7E-01 +0.0E+00 -5.4E-01 +0.0E+00

(+1.0E-01) | (+2.9E-01) (+1.8E-01)
=====================================================================================================================

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-3.1E+01

(+4.5E+00)
==========

4.5.7 Optimal Micro Moments

Similarly, if we have micro data that links individual choices to demographics, we can use all the information in this data by constructing optimal micro moments
that match the score of the micro data, evaluated at our consistent estimate of 𝜃. See the micro moments tutorial for an introduction to constructing non-optimal
micro moments.

We don’t have actual micro data for this empirical example, but we can simulate some just to demonstrate how to construct optimal micro moments. We’ll use
the ProblemResults.simulate_micro_data method to simulate 1,000 observations from a micro dataset at the estimated 𝜃. Like most micro datasets, we’ll define
compute_weights such that we only have observations from consumer who purchase an inside good 𝑗 ̸= 0. For simplicity, we’ll assume we only have micro
data from a single market, 'C61Q1'. Again, see the micro moments tutorial for a more in-depth discussion of MicroDataset and micro moments.

[25]: micro_dataset = pyblp.MicroDataset(

(continues on next page)
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name="Simulated micro data",
observations=1_000,
compute_weights=lambda t, p, a: np.ones((a.size, 1 + p.size)),
market_ids=['C61Q1'],

)
micro_data = results.simulate_micro_data(

dataset=micro_dataset,
seed=0,

)

The simulated micro data are a record array, which can be difficult to visualize. We’ll convert it to a pandas dataframe, which is what we would usually load from
an actual micro dataset file.

[26]: micro_data = pd.DataFrame(pyblp.data_to_dict(micro_data))
micro_data

[26]: micro_ids market_ids agent_indices choice_indices
0 0 C61Q1 10 24
1 1 C61Q1 14 0
2 2 C61Q1 12 0
3 3 C61Q1 10 21
4 4 C61Q1 8 10
.. ... ... ... ...
995 995 C61Q1 1 23
996 996 C61Q1 10 4
997 997 C61Q1 18 0
998 998 C61Q1 4 0
999 999 C61Q1 13 2

[1000 rows x 4 columns]

The simulated micro data contain four columns:

• micro_ids: This is simply an index from 0 to 999, indexing each micro observation.

• market_ids: This is the market of each observation. We configured our MicroDatasetto only sample from one market.

• agent_indices: This is the within-market index (from 0 to 𝐼𝑡 − 1 in market 𝑡) of the agent data row that was sampled with probability 𝑤𝑖𝑡, configured
by the weights column in agent data.

• choice_indices: This is the within-market index (from 0 to 𝐽𝑡 − 1 in market 𝑡) of the produt data row that was sampled with probability 𝑠𝑖𝑗𝑡 evaluated
at the consistent estimate of 𝜃.
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The simulated data contain a bit more information than we would usually have in actual micro data. The agent_indices contain information not only about
observed demographics of the micro observation, but also about unobserved preferences. We will merge in only observed demographics for each agent index to get
a more realistic simulated micro dataset.

[27]: agent_data['agent_indices'] = agent_data.groupby('market_ids').cumcount()
micro_data = micro_data.merge(

agent_data[['market_ids', 'agent_indices', 'income', 'income_squared', 'age', 'child']],
on=['market_ids', 'agent_indices']

)
del micro_data['agent_indices']
micro_data

[27]: micro_ids market_ids choice_indices income income_squared age \
0 0 C61Q1 24 1.212283 22.546328 0.624306
1 3 C61Q1 21 1.212283 22.546328 0.624306
2 11 C61Q1 11 1.212283 22.546328 0.624306
3 28 C61Q1 10 1.212283 22.546328 0.624306
4 86 C61Q1 10 1.212283 22.546328 0.624306
.. ... ... ... ... ... ...
995 937 C61Q1 0 0.636478 11.051747 -0.090347
996 952 C61Q1 5 0.636478 11.051747 -0.090347
997 954 C61Q1 14 0.636478 11.051747 -0.090347
998 971 C61Q1 13 0.636478 11.051747 -0.090347
999 975 C61Q1 22 0.636478 11.051747 -0.090347

child
0 -0.230851
1 -0.230851
2 -0.230851
3 -0.230851
4 -0.230851
.. ...
995 -0.230851
996 -0.230851
997 -0.230851
998 -0.230851
999 -0.230851

[1000 rows x 7 columns]

This is more like real micro data that we would actually load from a file. For each observation, we know the market, choice, and demographics of the consumer.

To compute optimal micro moments at our consistent estimate of 𝜃, we need to compute two types of scores:
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1. The score for each observation in our micro data via ProblemResults.compute_micro_scores.

2. The score for each possible agent-choice in the model via ProblemResults.compute_agent_scores.

For each, we will integrate over unobserved heterogeneity with quadrature, but one could use Monte Carlo methods too. We will do so by just passing an Integration
configuration to these two methods, but we could also do so by duplicating each row of micro data by as many integration nodes/weights we wanted for each, adding
weights and nodes columns as with agent data.

[28]: score_integration = pyblp.Integration('product', 5)
micro_scores = results.compute_micro_scores(micro_dataset, micro_data, integration=score_integration)
agent_scores = results.compute_agent_scores(micro_dataset, integration=score_integration)

Both micro_scores and agent_scores are lists, with one element for each nonlinear parameter in 𝜃. The ordering is

[29]: results.theta_labels

[29]: ['1 x 1',
'prices x prices',
'sugar x sugar',
'mushy x mushy',
'1 x income',
'1 x age',
'prices x income',
'prices x income_squared',
'prices x child',
'sugar x income',
'sugar x age',
'mushy x income',
'mushy x age']

The first element of micro_scores corresponds to the 𝜎 on the constant term (i.e., the '1 x 1' above). It has the estimated score for each observation in
micro_data:

[30]: micro_scores[0].shape

[30]: (1000,)

The first element of agent_scores also correspondds to the 𝜎 on the constant term. It is a mapping from market IDs to arrays of scores for each of the 𝐼𝑡 × 𝐽𝑡
possible agent-choices in that market.

[31]: agent_scores[0]['C61Q1'].shape

[31]: (20, 25)
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We will construct one optimal MicroMoment for each parameter, matching the average score (via a MicroPart) for that parameter from the micro data with its model
counterpart.

[32]: optimal_micro_moments = []
for m, (micro_scores_m, agent_scores_m) in enumerate(zip(micro_scores, agent_scores)):

optimal_micro_moments.append(pyblp.MicroMoment(
name=f"Score for parameter #{m}",
value=micro_scores_m.mean(),
parts=pyblp.MicroPart(

name=f"Score for parameter #{m}",
dataset=micro_dataset,
compute_values=lambda t, p, a, v=agent_scores_m: v[t],

),
))

For example, some information about the optimal micro moment for the first parameter is as follows.

[33]: optimal_micro_moments[0]

[33]: Score for parameter #0: -2.8E-02 (Score for parameter #0 on Simulated micro data: 1000 Observations in Market 'C61Q1')

Now, we can use our problem with updated optimal IVs, including our optimal micro moments, to obtain an efficient estimator.

[34]: updated_results = updated_problem.solve(
results.sigma,
results.pi,
optimization=pyblp.Optimization('bfgs', {'gtol': 1e-5}),
method='1s',
micro_moments=optimal_micro_moments,

)
updated_results

[34]: Problem Results Summary:
=======================================================================================================
GMM Objective Gradient Hessian Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- -------- -------------- -------------- ------- ---------------- -----------------
1 +1.1E+02 +8.8E-06 +2.3E-03 +8.3E+04 0 +2.2E+08 +4.1E+07

=======================================================================================================

Cumulative Statistics:

(continues on next page)
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(continued from previous page)

===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:01:26 Yes 34 55 42977 133908

===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
=====================================================================================================================
Sigma: 1 prices sugar mushy | Pi: income income_squared age child
------ ---------- ---------- ---------- ---------- | ------ ---------- -------------- ---------- ----------

1 +4.6E-01 | 1 +4.8E+00 +0.0E+00 +6.5E-01 +0.0E+00
(+6.7E-02) | (+3.5E-01) (+1.5E-01)

|
prices +0.0E+00 +3.1E+00 | prices +4.7E+02 -2.5E+01 +0.0E+00 +3.2E+00

(+5.3E-01) | (+3.1E+01) (+1.6E+00) (+1.7E+00)
|

sugar +0.0E+00 +0.0E+00 +2.0E-02 | sugar -4.0E-01 +0.0E+00 +4.6E-02 +0.0E+00
(+6.1E-03) | (+2.4E-02) (+9.2E-03)

|
mushy +0.0E+00 +0.0E+00 +0.0E+00 -6.6E-02 | mushy +1.1E+00 +0.0E+00 -1.1E+00 +0.0E+00

(+8.3E-02) | (+1.9E-01) (+1.1E-01)
=====================================================================================================================

Beta Estimates (Robust SEs in Parentheses):
==========

prices
----------
-5.2E+01

(+2.2E+00)
==========

Estimated Micro Moments:
==============================================================================================================================
Observed Estimated Difference Moment Part Dataset Observations
→˓Markets
-------- --------- ---------- ----------------------- ----------------------- -------------------- ------------ -
→˓------
-2.8E-02 -2.3E-02 -5.5E-03 Score for parameter #0 Score for parameter #0 Simulated micro data 1000
→˓ 1

(continues on next page)
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+6.4E-04 +9.8E-04 -3.4E-04 Score for parameter #1 Score for parameter #1 Simulated micro data 1000
→˓ 1
+1.1E-01 +1.5E-01 -3.4E-02 Score for parameter #2 Score for parameter #2 Simulated micro data 1000
→˓ 1
-2.9E-04 -3.6E-04 +7.0E-05 Score for parameter #3 Score for parameter #3 Simulated micro data 1000
→˓ 1
-2.0E-03 +2.1E-02 -2.3E-02 Score for parameter #4 Score for parameter #4 Simulated micro data 1000
→˓ 1
-3.6E-02 -3.0E-02 -6.3E-03 Score for parameter #5 Score for parameter #5 Simulated micro data 1000
→˓ 1
-2.5E-04 +2.1E-03 -2.4E-03 Score for parameter #6 Score for parameter #6 Simulated micro data 1000
→˓ 1
-6.8E-03 +4.0E-02 -4.7E-02 Score for parameter #7 Score for parameter #7 Simulated micro data 1000
→˓ 1
+1.7E-03 +1.0E-03 +6.8E-04 Score for parameter #8 Score for parameter #8 Simulated micro data 1000
→˓ 1
+5.5E-02 +1.8E-01 -1.3E-01 Score for parameter #9 Score for parameter #9 Simulated micro data 1000
→˓ 1
-4.8E-01 -4.7E-01 -1.0E-02 Score for parameter #10 Score for parameter #10 Simulated micro data 1000
→˓ 1
-2.9E-03 +8.1E-03 -1.1E-02 Score for parameter #11 Score for parameter #11 Simulated micro data 1000
→˓ 1
-2.6E-02 -5.5E-03 -2.0E-02 Score for parameter #12 Score for parameter #12 Simulated micro data 1000
→˓ 1
==============================================================================================================================

Results are fairly similar to before because we simulated the micro data from our first-stage estimate of 𝜃, which was somewhat close to our second-stage estimate.
Scores are not matched perfectly because the model is now over-identified, with two times as many moments as there are parameters (one optimal IV and one
optimal micro moment for each nonlinear parameter).
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The online version of the following section may be easier to read.

4.6 Problem Simulation Tutorial

[1]: import pyblp
import numpy as np
import pandas as pd

pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__

[1]: '1.1.0'

Before configuring and solving a problem with real data, it may be a good idea to perform Monte Carlo analysis on simulated data to verify that it is possible to
accurately estimate model parameters. For example, before configuring and solving the example problems in the prior tutorials, it may have been a good idea to
simulate data according to the assumed models of supply and demand. During such Monte Carlo anaysis, the data would only be used to determine sample sizes
and perhaps to choose reasonable true parameters.

Simulations are configured with the Simulation class, which requires many of the same inputs as Problem. The two main differences are:

1. Variables in formulations that cannot be loaded from product_data or agent_data will be drawn from independent uniform distributions.

2. True parameters and the distribution of unobserved product characteristics are specified.

First, we’ll use build_id_data to build market and firm IDs for a model in which there are 𝑇 = 50 markets, and in each market 𝑡, a total of 𝐽𝑡 = 20 products
produced by 𝐹 = 10 firms.

[2]: id_data = pyblp.build_id_data(T=50, J=20, F=10)

Next, we’ll create an Integration configuration to build agent data according to a Gauss-Hermite product rule that exactly integrates polynomials of degree 2×9−1 =
17 or less.

[3]: integration = pyblp.Integration('product', 9)
integration

[3]: Configured to construct nodes and weights according to the level-9 Gauss-Hermite product rule with options {}.

We’ll then pass these data to Simulation. We’ll use Formulation configurations to create an 𝑋1 that consists of a constant, prices, and an exogenous characteristic;
an 𝑋2 that consists only of the same exogenous characteristic; and an 𝑋3 that consists of the common exogenous characteristic and a cost-shifter.
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[4]: simulation = pyblp.Simulation(
product_formulations=(

pyblp.Formulation('1 + prices + x'),
pyblp.Formulation('0 + x'),
pyblp.Formulation('0 + x + z')

),
beta=[1, -2, 2],
sigma=1,
gamma=[1, 4],
product_data=id_data,
integration=integration,
seed=0

)
simulation

[4]: Dimensions:
=====================================
T N F I K1 K2 K3

--- ---- --- --- ---- ---- ----
50 1000 10 450 3 1 2
=====================================

Formulations:
=================================================

Column Indices: 0 1 2
------------------------------- --- ------ ---

X1: Linear Characteristics 1 prices x
X2: Nonlinear Characteristics x

X3: Linear Cost Characteristics x z
=================================================

Nonlinear Coefficient True Values:
================
Sigma: x
------ --------

x +1.0E+00
================

Beta True Values:
============================

1 prices x

(continues on next page)
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(continued from previous page)

-------- -------- --------
+1.0E+00 -2.0E+00 +2.0E+00
============================

Gamma True Values:
==================

x z
-------- --------
+1.0E+00 +4.0E+00
==================

When Simulation is initialized, it constructs Simulation.agent_data and simulates Simulation.product_data.

The Simulation can be further configured with other arguments that determine how unobserved product characteristics are simulated and how marginal costs are
specified.

At this stage, simulated variables are not consistent with true parameters, so we still need to solve the simulation with Simulation.replace_endogenous. This method
replaced simulated prices and market shares with values that are consistent with the true parameters. Just like ProblemResults.compute_prices, to do so it iterates
over the 𝜁-markup equation from Morrow and Skerlos (2011).

[5]: simulation_results = simulation.replace_endogenous()
simulation_results

[5]: Simulation Results Summary:
======================================================================================================
Computation Fixed Point Fixed Point Contraction Profit Gradients Profit Hessians Profit Hessians

Time Failures Iterations Evaluations Max Norm Min Eigenvalue Max Eigenvalue
----------- ----------- ----------- ----------- ---------------- --------------- ---------------
00:00:00 0 721 721 +1.3E-13 -8.4E-01 -9.6E-06

======================================================================================================

Now, we can try to recover the true parameters by creating and solving a Problem.

The convenience method SimulationResults.to_problem constructs some basic “sums of characteristics” BLP instruments that are functions of all exogenous
numerical variables in the problem. In this example, excluded demand-side instruments are the cost-shifter z and traditional BLP instruments constructed from x.
Excluded supply-side instruments are traditional BLP instruments constructed from x and z.

[6]: problem = simulation_results.to_problem()
problem

[6]: Dimensions:
=================================================

(continues on next page)
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T N F I K1 K2 K3 MD MS
--- ---- --- --- ---- ---- ---- ---- ----
50 1000 10 450 3 1 2 5 6
=================================================

Formulations:
=================================================

Column Indices: 0 1 2
------------------------------- --- ------ ---

X1: Linear Characteristics 1 prices x
X2: Nonlinear Characteristics x

X3: Linear Cost Characteristics x z
=================================================

We’ll choose starting values that are half the true parameters so that the optimization routine has to do some work. Note that since we’re jointly estimating the
supply side, we need to provide an initial value for the linear coefficient on prices because this parameter cannot be concentrated out of the problem (unlike linear
coefficients on exogenous characteristics).

[8]: results = problem.solve(
sigma=0.5 * simulation.sigma,
pi=0.5 * simulation.pi,
beta=[None, 0.5 * simulation.beta[1, 0], None],
optimization=pyblp.Optimization('l-bfgs-b', {'gtol': 1e-5})

)
results

[8]: Problem Results Summary:
==============================================================================================================
GMM Objective Projected Reduced Hessian Reduced Hessian Clipped Weighting Matrix Covariance Matrix
Step Value Gradient Norm Min Eigenvalue Max Eigenvalue Shares Condition Number Condition Number
---- --------- ------------- --------------- --------------- ------- ---------------- -----------------
2 +6.4E+00 +6.9E-08 +7.2E+00 +3.8E+03 0 +3.7E+04 +1.5E+04

==============================================================================================================

Cumulative Statistics:
===========================================================================
Computation Optimizer Optimization Objective Fixed Point Contraction

Time Converged Iterations Evaluations Iterations Evaluations
----------- --------- ------------ ----------- ----------- -----------
00:00:04 Yes 23 30 8289 26305

(continues on next page)
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===========================================================================

Nonlinear Coefficient Estimates (Robust SEs in Parentheses):
==================
Sigma: x
------ ----------

x +7.8E-01
(+5.2E-01)

==================

Beta Estimates (Robust SEs in Parentheses):
==================================

1 prices x
---------- ---------- ----------
+9.6E-01 -2.0E+00 +2.1E+00

(+9.3E-02) (+2.4E-02) (+1.4E-01)
==================================

Gamma Estimates (Robust SEs in Parentheses):
======================

x z
---------- ----------
+9.8E-01 +4.0E+00

(+8.7E-02) (+8.5E-02)
======================

The parameters seem to have been estimated reasonably well.

[9]: np.c_[simulation.beta, results.beta]

[9]: array([[ 1. , 0.96223514],
[-2. , -2.00792431],
[ 2. , 2.10032015]])

[10]: np.c_[simulation.gamma, results.gamma]

[10]: array([[1. , 0.97820624],
[4. , 4.03121577]])

[11]: np.c_[simulation.sigma, results.sigma]
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[11]: array([[1. , 0.78358853]])

In addition to checking that the configuration for a model based on actual data makes sense, the Simulation class can also be a helpful tool for better understanding
under what general conditions BLP models can be accurately estimated. Simulations are also used extensively in pyblp’s test suite.
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The majority of the package consists of classes, which compartmentalize different aspects of the BLP model. There
are some convenience functions as well.

5.1 Configuration Classes

Various components of the package require configurations for how to approximate integrals, solve fixed point prob-
lems, and solve optimimzation problems. Such configurations are specified with the following classes.

Formulation(formula[, absorb, . . . ]) Configuration for designing matrices and absorbing
fixed effects.

Integration(specification, size[, . . . ]) Configuration for building integration nodes and
weights.

Iteration(method[, method_options, . . . ]) Configuration for solving fixed point problems.
Optimization(method[, method_options, . . . ]) Configuration for solving optimization problems.

5.1.1 pyblp.Formulation

class pyblp.Formulation(formula, absorb=None, absorb_method=None, absorb_options=None)
Configuration for designing matrices and absorbing fixed effects.

Internally, the patsy package is used to convert data and R-style formulas into matrices. All of the standard
binary operators can be used to design complex matrices of factor interactions:

• + - Set union of terms.

• - - Set difference of terms.

• * - Short-hand. The formula a * b is the same as a + b + a:b.

• / - Short-hand. The formula a / b is the same as a + a:b.

• : - Interactions between two sets of terms.

• ** - Interactions up to an integer degree.

However, since factors need to be differentiated (for example, when computing elasticities), only the most
essential functions are supported:

• C - Mark a variable as categorical. See patsy.builtins.C(). Arguments are not supported.

• I - Encapsulate mathematical operations. See patsy.builtins.I().

• log - Natural logarithm function.
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• exp - Natural exponential function.

Data associated with variables should generally already be transformed. However, when encapsulated by I(),
these operators function like normal mathematical operators on numeric variables: + adds, - subtracts, * mul-
tiplies, / divides, and ** exponentiates.

Internally, mathematical operations are parsed and evaluated by the SymPy package, which is also used to
symbolically differentiate terms when derivatives are needed.

Parameters

• formula (str) – R-style formula used to design a matrix. Variable names will be validated
when this formulation and data are passed to a function that uses them. By default, an
intercept is included, which can be removed with 0 or -1. If absorb is specified, intercepts
are ignored.

• absorb (str, optional) – R-style formula used to design a matrix of categorical variables
representing fixed effects, which will be absorbed into the matrix designed by formula by
the PyHDFE package. Fixed effect absorption is only supported for some matrices. Unlike
formula, intercepts are ignored. Only categorical variables are supported.

• absorb_method (str, optional) – Method by which fixed effects will be absorbed.
For a full list of supported methods, refer to the residualize_method argument of
pyhdfe.create().

By default, the simplest methods are used: simple de-meaning for a single fixed effect
and simple iterative de-meaning by way of the method of alternating projections (MAP)
for multiple dimensions of fixed effects. For multiple dimensions, non-accelerated MAP is
unlikely to be the fastest algorithm. If fixed effect absorption seems to be taking a long time,
consider using a different method such as 'lsmr', using absorb_options to specify a
MAP acceleration method, or configuring other options such as termination tolerances.

• absorb_options (dict, optional) – Configuration options for the chosen method,
which will be passed to the options argument of pyhdfe.create().

Examples
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The online version of the following section may be easier to read.

Formulation Example

[1]: import pyblp

pyblp.__version__

[1]: '1.1.0'

In this example, we’ll design a matrix without an intercept, but with both prices and another numeric size variable.

[2]: formulation = pyblp.Formulation('0 + prices + size')
formulation

[2]: prices + size

Next, we’ll design a second matrix with an intercept, with first- and second-degree size terms, with categorical
product IDs and years, and with the interaction of the last two. The first formulation will include the fixed effects as
indicator variables, and the second will absorb them.

[3]: formulation1 = pyblp.Formulation('size + I(size ** 2) + C(product) * C(year)')
formulation1

[3]: 1 + size + I(size ** 2) + C(product) + C(year) + C(product):C(year)

[4]: formulation2 = pyblp.Formulation('size + I(size ** 2)', absorb='C(product) * C(year)')
formulation2

[4]: size + I(size ** 2) + Absorb[C(product)] + Absorb[C(year)] + Absorb[C(product):C(year)]

Finally, we’ll design a third matrix with an intercept and with a yearly trend interacted with the natural logarithm of
income and categorical education. Absorption of continuous variables is not supported, so we need to use dummy
variables.

[5]: formulation = pyblp.Formulation('year:(log(income) + C(education))')
formulation

[5]: 1 + year:log(income) + year:C(education)
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5.1.2 pyblp.Integration

class pyblp.Integration(specification, size, specification_options=None)
Configuration for building integration nodes and weights.

Parameters

• specification (str) – How to build nodes and weights. One of the following:

– 'monte_carlo' - Draw from a pseudo-random standard multivariate normal distribu-
tion. Integration weights are 1 / size. The seed field of options can be used to
seed the random number generator.

– 'halton' - Generate nodes according to the Halton. A different prime (starting with
2, 3, 5, etc.) is used for each dimension of integration. To eliminate correlation between
dimensions, the first 1000 values are by default discarded in each dimension. To further
improve performance (particularly in settings with many dimensions), sequences are also
by default scrambled with the algorithm of Owen (2017). The discard, scramble,
and seed fields of options can be used to configure these default settings.

– 'lhs' - Generate nodes according to Latin Hypercube Sampling (LHS). Integration
weights are 1 / size. The seed field of options can be used to seed the random
number generator.

– 'mlhs' - Generate nodes according to Modified Latin Hypercube Sampling (MLHS)
described by Hess, Train, and Polak (2004). Integration weights are 1 / size. The
seed field of options can be used to seed the random number generator.

– 'product' - Generate nodes and weights according to the level-size Gauss-Hermite
product rule.

– 'nested_product' - Generate nodes and weights according to the level-size nested
Gauss-Hermite product rule. Weights can be negative.

– 'grid' - Generate a sparse grid of nodes and weights according to the level-size
Gauss-Hermite quadrature rule. Weights can be negative.

– 'nested_grid' - Generate a sparse grid of nodes and weights according to the level
size nested Gauss-Hermite quadrature rule. Weights can be negative.

Best practice for low dimensions is probably to use 'product' to a relatively high degree
of polynomial accuracy. In higher dimensions, 'grid' or 'halton' appears to scale
the best. For more information, see Judd and Skrainka (2011) and Conlon and Gortmaker
(2020).

Sparse grids are constructed in analogously to the Matlab function nwspgr created by Florian
Heiss and Viktor Winschel. For more information, see Heiss and Winschel (2008).

• size (int) – The number of draws if specification is 'monte_carlo',
'halton', 'lhs', or 'mlhs', and the level of the quadrature rule otherwise.

• specification_options (dict, optional) – Options for the integration specification.
The 'monte_carlo', 'halton', 'lhs', and 'mlhs' specifications support the fol-
lowing option:

– seed : (int) - Passed to numpy.random.RandomState to seed the random number
generator before building integration nodes. By default, a seed is not passed to the random
number generator. For 'halton' draws, this is only relevant if scramble is True
(which is the default).

The 'halton' specification supports the following options:
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– discard : (int) - How many values at the beginning of each dimension’s Halton sequence
to discard. Discarding values at the start of each dimension’s sequence is the simplest
way to eliminate correlation between dimensions. By default, the first 1000 values in
each dimension are discarded.

– scramble : (bool) - Whether to scramble the sequences with the algorithm of Owen
(2017). By default, sequences are scrambled.

Examples
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The online version of the following section may be easier to read.

Integration Example

[1]: import pyblp

pyblp.__version__

[1]: '1.1.0'

In this example, we’ll build a Monte Carlo configuration with 1,000 draws for each market and a fixed seed.

[2]: integration = pyblp.Integration('monte_carlo', size=1000, specification_options={'seed': 0})
integration

[2]: Configured to construct nodes and weights with Monte Carlo simulation with options {seed: 0}.

Depending on the dimension of the integration problem, a level six sparse grid configuration may have a similar
number of nodes. However, even if there are fewer nodes, it is likely to perform better in the BLP problem. Sparse
grid construction is deterministic, so a seed is not needed to fix the grid every time we use this configuration.

[3]: integration = pyblp.Integration('grid', size=7)
integration

[3]: Configured to construct nodes and weights in a sparse grid according to the level-7 Gauss-Hermite rule with options {}.
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5.1.3 pyblp.Iteration

class pyblp.Iteration(method, method_options=None, compute_jacobian=False, univer-
sal_display=False)

Configuration for solving fixed point problems.

Parameters

• method (str or callable) – The fixed point iteration routine that will be used. The following
routines do not use analytic Jacobians:

– 'simple' - Non-accelerated iteration.

– 'squarem' - SQUAREM acceleration method of Varadhan and Roland (2008) and
considered in the context of the BLP problem in Reynaerts, Varadhan, and Nash (2012).
This implementation uses a first-order squared non-monotone extrapolation scheme.

– 'broyden1' - Use the scipy.optimize.root()Broyden’s first Jacobian approx-
imation method, known as Broyden’s good method.

– 'broyden2' - Use the scipy.optimize.root() Broyden’s second Jacobian ap-
proximation method, known as Broyden’s bad method.

– 'anderson' - Use the scipy.optimize.root() Anderson method.

– 'krylov' - Use the scipy.optimize.root() Krylov approximation for inverse
Jacobian method.

– 'diagbroyden' - Use the scipy.optimize.root() diagonal Broyden Jacobian
approximation method.

– 'df-sane' - Use the scipy.optimize.root() derivative-free spectral method.

The following routines can use analytic Jacobians:

– 'hybr' - Use the scipy.optimize.root() modification of the Powell hybrid
method implemented in MINIPACK.

– 'lm' - Uses the scipy.optimize.root() modification of the Levenberg-
Marquardt algorithm implemented in MINIPACK.

The following trivial routine can be used to simply return the initial values:

– 'return' - Assume that the initial values are the optimal ones.

Also accepted is a custom callable method with the following form:

method(initial, contraction, callback, **options) -> (final,
→˓converged)

where initial is an array of initial values, contraction is a callable contraction map-
ping of the form specified below, callback is a function that should be called without any
arguments after each major iteration (it is used to record the number of major iterations),
options are specified below, final is an array of final values, and converged is a flag
for whether the routine converged.

The contraction function has the following form:

contraction(x0) -> (x1, weights, jacobian)

where weights are either None or a vector of weights that should multiply x1
- x before computing the norm of the differences, and jacobian is None if
compute_jacobian is False.
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Regardless of the chosen routine, if there are any computational issues that create infinities
or null values, final will be the second to last iteration’s values.

• method_options (dict, optional) – Options for the fixed point iteration routine.

For routines other and 'simple', 'squarem', and 'return', these options will be
passed to options in scipy.optimize.root(). Refer to the SciPy documentation
for information about which options are available. By default, the tol_norm option is
configured to use the infinity norm for SciPy methods other than 'hybr' and 'lm', for
which a norm cannot be specified.

The 'simple' and 'squarem' methods support the following options:

– max_evaluations : (int) - Maximum number of contraction mapping evaluations. The
default value is 5000.

– atol : (float) - Absolute tolerance for convergence of the configured norm. The default
value is 1e-14. To use only a relative tolerance, set this to zero.

– rtol (float) - Relative tolerance for convergence of the configured norm. The default value
is zero; that is, only absolute tolerance is used by default.

– norm : (callable) - The norm to be used. By default, the ℓ∞-norm is used. If specified,
this should be a function that accepts an array of differences and that returns a scalar
norm.

The 'squarem' routine accepts additional options that mirror those in the SQUAREM
package, written in R by Ravi Varadhan, which identifies the step length with −𝛼 from
Varadhan and Roland (2008):

– scheme : (int) - The default value is 3, which corresponds to S3 in Varadhan and Roland
(2008). Other acceptable schemes are 1 and 2, which correspond to S1 and S2.

– step_min : (float) - The initial value for the minimum step length. The default value is
1.0.

– step_max : (float) - The initial value for the maximum step length. The default value is
1.0.

– step_factor : (float) - When the step length exceeds step_max, it is set equal to
step_max, but step_max is scaled by this factor. Similarly, if step_min is negative
and the step length is below step_min, it is set equal to step_min and step_min is
scaled by this factor. The default value is 4.0.

• compute_jacobian (bool, optional) – Whether to compute an analytic Jacobian during
iteration. By default, analytic Jacobians are not computed, and if a method is selected that
supports analytic Jacobians, they will by default be numerically approximated.

• universal_display (bool, optional) – Whether to format iteration progress such that
the display looks the same for all routines. By default, the universal display is not used
and no iteration progress is displayed. Setting this to True can be helpful for debugging
iteration issues. For example, iteration may get stuck above the configured termination
tolerance.

Examples
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The online version of the following section may be easier to read.

Iteration Example

[1]: import pyblp
import numpy as np

pyblp.__version__

[1]: '1.1.0'

In this example, we’ll build a SQUAREM configuration with a ℓ2-norm and use scheme S1 from Varadhan and
Roland (2008).

[2]: iteration = pyblp.Iteration('squarem', {'norm': np.linalg.norm, 'scheme': 1})
iteration

[2]: Configured to iterate using the SQUAREM acceleration method without analytic Jacobians with options {atol: +1.000000E-
→˓14, rtol: 0, max_evaluations: 5000, norm: numpy.linalg.norm, scheme: 1, step_min: +1.000000E+00, step_max: +1.
→˓000000E+00, step_factor: +4.000000E+00}.

Next, instead of using a built-in routine, we’ll create a custom method that implements a version of simple itera-
tion, which, for the sake of having a nontrivial example, arbitrarily identifies a major iteration with three objective
evaluations.

[3]: def custom_method(initial, contraction, callback, max_evaluations, tol, norm):
x = initial
evaluations = 0
while evaluations < max_evaluations:

x0, (x, weights, _) = x, contraction(x)
evaluations += 1
if evaluations % 3 == 0:

callback()
if weights is None:

difference = norm(x - x0)
else:

difference = norm(weights * (x - x0))
if difference < tol:

(continues on next page)
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(continued from previous page)

break
return x, evaluations < max_evaluations

We can then use this custom method to build a custom iteration configuration.

[4]: iteration = pyblp.Iteration(custom_method)
iteration

[4]: Configured to iterate using a custom method without analytic Jacobians with options {}.
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5.1.4 pyblp.Optimization

class pyblp.Optimization(method, method_options=None, compute_gradient=True, univer-
sal_display=True)

Configuration for solving optimization problems.

Parameters

• method (str or callable) – The optimization routine that will be used. The following rou-
tines support parameter bounds and use analytic gradients:

– 'knitro' - Uses an installed version of Artleys Knitro. Python 3 is supported by Knitro
version 10.3 and newer. A number of environment variables most likely need to be config-
ured properly, such as KNITRODIR, ARTELYS_LICENSE, LD_LIBRARY_PATH (on
Linux), and DYLD_LIBRARY_PATH (on Mac OS X). For more information, refer to the
Knitro installation guide.

– 'slsqp' - Uses the scipy.optimize.minimize() SLSQP routine.

– 'trust-constr' - Uses the scipy.optimize.minimize() trust-region rou-
tine.

– 'l-bfgs-b' - Uses the scipy.optimize.minimize() L-BFGS-B routine.

– 'tnc' - Uses the scipy.optimize.minimize() TNC routine.

The following routines also use analytic gradients but will ignore parameter bounds (not
bounding the problem may create issues if the optimizer tries out large parameter values
that create overflow errors):

– 'cg' - Uses the scipy.optimize.minimize() CG routine.

– 'bfgs' - Uses the scipy.optimize.minimize() BFGS routine.

– 'newton-cg' - Uses the scipy.optimize.minimize() Newton-CG routine.

The following routines do not use analytic gradients and will also ignore parameter bounds
(without analytic gradients, optimization will likely be much slower):

– 'nelder-mead' - Uses the scipy.optimize.minimize() Nelder-Mead rou-
tine.

– 'powell' - Uses the scipy.optimize.minimize() Powell routine.

The following trivial routine can be used to evaluate an objective at specific parameter val-
ues:

– 'return' - Assume that the initial parameter values are the optimal ones.

Also accepted is a custom callable method with the following form:

method(initial, bounds, objective_function, iteration_callback,
→˓**options) -> (final, converged)

where initial is an array of initial parameter values, bounds is a list of (min, max)
pairs for each element in initial, objective_function is a callable objective func-
tion of the form specified below, iteration_callback is a function that should be
called without any arguments after each major iteration (it is used to record the number of
major iterations), options are specified below, final is an array of optimized parameter
values, and converged is a flag for whether the routine converged.

The objective_function has the following form:

objective_function(theta) -> (objective, gradient, progress)
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where gradient is None if compute_gradient is ``False and progress is
an OptimizationProgress object that contains additional information about opti-
mization progress so far, which may be helpful for debugging or to inform non-standard
optimization routines.

• method_options (dict, optional) – Options for the optimization routine.

For any non-custom method other than 'knitro' and 'return', these options
will be passed to options in scipy.optimize.minimize(), with the excep-
tion of 'keep_feasible', which is by default True and is passed to any scipy.
optimize.Bounds. Refer to the SciPy documentation for information about which op-
tions are available for each optimization routine.

If method is 'knitro', these options should be Knitro user options. The non-standard
knitro_dir option can also be specified. The following options have non-standard de-
fault values:

– knitro_dir : (str) - By default, the KNITRODIR environment variable is used. Other-
wise, this option should point to the installation directory of Knitro, which contains direct
subdirectories such as 'examples' and 'lib'. For example, on Windows this option
could be '/Program Files/Artleys3/Knitro 10.3.0'.

– algorithm : (int) - The optimization algorithm to be used. The default value is 1, which
corresponds to the Interior/Direct algorithm.

– gradopt : (int) - How the objective’s gradient is computed. The default value is 1 if
compute_gradient is True and is 2 otherwise, which corresponds to estimating the
gradient with finite differences.

– hessopt : (int) - How the objective’s Hessian is computed. The default value is 2, which
corresponds to computing a quasi-Newton BFGS Hessian.

– honorbnds : (int) - Whether to enforce satisfaction of simple variable bounds. The de-
fault value is 1, which corresponds to enforcing that the initial point and all subsequent
solution estimates satisfy the bounds.

• compute_gradient (bool, optional) – Whether to compute an analytic objective gradi-
ent during optimization, which must be False if method does not use analytic gradients,
and must be True if method is 'newton-cg', which requires an analytic gradient.

By default, analytic gradients are computed. Not using an analytic gradient will likely slow
down estimation a good deal. If False, an analytic gradient may still be computed once
at the end of optimization to compute optimization results. To always use finite differences,
finite_differences in Problem.solve() can be set to True.

• universal_display (bool, optional) – Whether to format optimization progress such
that the display looks the same for all routines. By default, the universal display is used and
some method_options are used to prevent default displays from showing up.

Examples
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The online version of the following section may be easier to read.

Optimization Example

[1]: import pyblp
import numpy as np

pyblp.__version__

[1]: '1.1.0'

In this example, we’ll build a L-BFGS-B configuration with a non-default tolerance.

[2]: optimization = pyblp.Optimization('l-bfgs-b', {'gtol': 1e-3})
optimization

[2]: Configured to optimize using the L-BFGS-B algorithm implemented in SciPy with analytic gradients and options {gtol: +1.
→˓000000E-03}.

Next, instead of using a non-custom routine, we’ll create a custom method that implements a grid search over param-
eter values between specified bounds.

[3]: from itertools import product
def custom_method(initial, bounds, objective_function, iteration_callback):

best_values = initial
best_objective = np.inf
for values in product(*(np.linspace(l, u, 10) for l, u in bounds)):

objective, _, _ = objective_function(values)
if objective < best_objective:

best_values = values
best_objective = objective

iteration_callback()
return best_values, True

We can then use this custom method to build an optimization configuration.

[4]: optimization = pyblp.Optimization(custom_method, compute_gradient=False)
optimization
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[4]: Configured to optimize using a custom method without analytic gradients and options {}.
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Custom optimization configurations can be used to help debug optimization, to define non-standard optimization
routines, or to add ad-hoc moments to configured problems. They can use various information about optimization
progress so far.

OptimizationProgress Information about the current progress of optimization.

5.1.5 pyblp.OptimizationProgress

class pyblp.OptimizationProgress
Information about the current progress of optimization.

They key attributes of this class needed to define a custom optimization routine are objective and
gradient. Many other attributes of ProblemResults are also included, and can be used to help define an
alternative optimization routine (e.g., Gauss-Newton), to debug issues, or to add custom ad-hoc moments to the
configured problem.

problem
Problem that created this progress.

Type Problem

fp_converged
Flags for convergence of the iteration routine used to compute 𝛿(𝜃) in each market. Values are in the same
order as Problem.unique_market_ids.

Type ndarray

fp_iterations
Number of major iterations completed by the iteration routine used to compute 𝛿(𝜃) in each market. Values
are in the same order as Problem.unique_market_ids.

Type ndarray

contraction_evaluations
Number of times the contraction used to compute 𝛿(𝜃) was evaluated in each market. Values are in the
same order as Problem.unique_market_ids.

Type ndarray

theta
Unfixed parameters, 𝜃, in the following order: Σ, Π, 𝜌, non-concentrated out elements from 𝛽, and non-
concentrated out elements from 𝛾.

Type ndarray

sigma
Cholesky root of the covariance matrix for unobserved taste heterogeneity, Σ.

Type ndarray

sigma_squared
Covariance matrix for unobserved taste heterogeneity, ΣΣ′.

Type ndarray

pi
Parameters that measures how agent tastes vary with demographics, Π.

Type ndarray
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rho
Parameters that measure within nesting group correlations, 𝜌.

Type ndarray

beta
Demand-side linear parameters, 𝛽.

Type ndarray

gamma
Supply-side linear parameters, 𝛾.

Type ndarray

sigma_bounds
Bounds for Σ that were used during optimization, which are of the form (lb, ub).

Type tuple

pi_bounds
Bounds for Π that were used during optimization, which are of the form (lb, ub).

Type tuple

rho_bounds
Bounds for 𝜌 that were used during optimization, which are of the form (lb, ub).

Type tuple

beta_bounds
Bounds for 𝛽 that were used during optimization, which are of the form (lb, ub).

Type tuple

gamma_bounds
Bounds for 𝛾 that were used during optimization, which are of the form (lb, ub).

Type tuple

sigma_labels
Variable labels for rows and columns of Σ, which are derived from the formulation for 𝑋2.

Type list of str

pi_labels
Variable labels for columns of Π, which are derived from the formulation for demographics.

Type list of str

rho_labels
Variable labels for 𝜌. If 𝜌 is not a scalar, this is Problem.unique_nesting_ids.

Type list of str

beta_labels
Variable labels for 𝛽, which are derived from the formulation for 𝑋1.

Type list of str

gamma_labels
Variable labels for 𝛾, which are derived from the formulation for 𝑋3.

Type list of str

theta_labels
Variable labels for 𝜃, which are derived from the above labels.
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Type list of str

delta
Mean utility, 𝛿(𝜃).

Type ndarray

clipped_shares
Vector of booleans indicating whether the associated simulated shares were clipped during the last fixed
point iteration to compute 𝛿(𝜃). All elements will be False if shares_bounds in Problem.
solve() is disabled (by default shares are bounded from below by a small number to alleviate issues
with underflow and negative shares).

Type ndarray

tilde_costs
Estimated transformed marginal costs, 𝑐(𝜃) from (3.9). If costs_bounds were specified in Problem.
solve(), 𝑐 may have been clipped.

Type ndarray

clipped_costs
Vector of booleans indicating whether the associated marginal costs were clipped. All elements will be
False if costs_bounds in Problem.solve() was not specified.

Type ndarray

xi
Unobserved demand-side product characteristics, 𝜉(𝜃), or equivalently, the demand-side structural error
term. When there are demand-side fixed effects, this is ∆𝜉(𝜃) in (3.32). That is, fixed effects are not
included.

Type ndarray

omega
Unobserved supply-side product characteristics, 𝜔(𝜃), or equivalently, the supply-side structural error
term. When there are supply-side fixed effects, this is ∆𝜔(𝜃) in (3.32). That is, fixed effects are not
included.

Type ndarray

micro
Micro moments, 𝑔𝑀 , in (3.34).

Type ndarray

micro_values
Micro moment values, 𝑓𝑚(𝑣). Rows are in the same order as ProblemResults.micro.

Type ndarray

objective
GMM objective value, 𝑞(𝜃), defined in (3.10). If scale_objective was True in Problem.
solve() (which is the default), this value was scaled by 𝑁 so that objective values are more compa-
rable across different problem sizes. Note that in some of the BLP literature (and earlier versions of this
package), this expression was previously scaled by 𝑁2.

Type float

xi_by_theta_jacobian
𝜕𝜉
𝜕𝜃 = 𝜕𝛿

𝜕𝜃 .

Type ndarray
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omega_by_theta_jacobian
𝜕𝜔
𝜕𝜃 = 𝜕𝑐

𝜕𝜃 .

Type ndarray

micro_by_theta_jacobian
𝜕𝑔𝑀
𝜕𝜃 .

Type ndarray

gradient
Gradient of the GMM objective, ∇𝑞(𝜃), defined in (3.18).

Type ndarray

projected_gradient
Projected gradient of the GMM objective. When there are no parameter bounds, this will always be equal
to ProblemResults.gradient. Otherwise, if an element in 𝜃 is equal to its lower (upper) bound,
the corresponding projected gradient value will be truncated at a maximum (minimum) of zero.

Type ndarray

projected_gradient_norm
Infinity norm of ProblemResults.projected_gradient.

Type ndarray

W
Weighting matrix, 𝑊 , used to compute these results.

Type ndarray

Methods

5.2 Data Manipulation Functions

There are also a number of convenience functions that can be used to construct common components of product and
agent data, or manipulate other PyBLP objects.

build_matrix(formulation, data) Construct a matrix according to a formulation.
build_blp_instruments(formulation, prod-
uct_data)

Construct “sums of characteristics” excluded BLP in-
struments.

build_differentiation_instruments(. . . [,
. . . ])

Construct excluded differentiation instruments.

build_id_data(T, J, F) Build a balanced panel of market and firm IDs.
build_ownership(product_data[, . . . ]) Build ownership matrices, 𝑂.
build_integration(integration, dimensions) Build nodes and weights for integration over agent

choice probabilities.
data_to_dict(data[, ignore_empty]) Convert a NumPy record array into a dictionary.
save_pickle(x, path) Save an object as a pickle file.
read_pickle(path) Load a pickled object into memory.
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5.2.1 pyblp.build_matrix

pyblp.build_matrix(formulation, data)
Construct a matrix according to a formulation.

Parameters

• formulation (Formulation) – Formulation configuration for the matrix. Variable
names should correspond to fields in data. The absorb argument of Formulation can
be used to absorb fixed effects after the matrix has been constructed.

• data (structured array-like) – Fields can be used as variables in formulation.

Returns The built matrix.

Return type ndarray

Examples
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The online version of the following section may be easier to read.

Building a Matrix Example

[1]: import pyblp
import pandas as pd

pyblp.__version__

[1]: '1.1.0'

In this example, we’ll load the fake cereal data from Nevo (2000a) and create a simple matrix involving a constant,
prices, and shares.

[2]: formulation = pyblp.Formulation('1 + prices + shares')
formulation

[2]: 1 + prices + shares

[3]: product_data = pd.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION)
product_data.head()

[3]: market_ids city_ids quarter product_ids firm_ids brand_ids shares \
0 C01Q1 1 1 F1B04 1 4 0.012417
1 C01Q1 1 1 F1B06 1 6 0.007809
2 C01Q1 1 1 F1B07 1 7 0.012995
3 C01Q1 1 1 F1B09 1 9 0.005770
4 C01Q1 1 1 F1B11 1 11 0.017934

prices sugar mushy ... demand_instruments10 demand_instruments11 \
0 0.072088 2 1 ... 2.116358 -0.154708
1 0.114178 18 1 ... -7.374091 -0.576412
2 0.132391 4 1 ... 2.187872 -0.207346
3 0.130344 3 0 ... 2.704576 0.040748
4 0.154823 12 0 ... 1.261242 0.034836

demand_instruments12 demand_instruments13 demand_instruments14 \
0 -0.005796 0.014538 0.126244
1 0.012991 0.076143 0.029736

(continues on next page)
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2 0.003509 0.091781 0.163773
3 -0.003724 0.094732 0.135274
4 -0.000568 0.102451 0.130640

demand_instruments15 demand_instruments16 demand_instruments17 \
0 0.067345 0.068423 0.034800
1 0.087867 0.110501 0.087784
2 0.111881 0.108226 0.086439
3 0.088090 0.101767 0.101777
4 0.084818 0.101075 0.125169

demand_instruments18 demand_instruments19
0 0.126346 0.035484
1 0.049872 0.072579
2 0.122347 0.101842
3 0.110741 0.104332
4 0.133464 0.121111

[5 rows x 30 columns]

[4]: matrix = pyblp.build_matrix(formulation, product_data)
matrix

[4]: array([[1. , 0.07208794, 0.01241721],
[1. , 0.11417849, 0.00780939],
[1. , 0.13239066, 0.01299451],
...,
[1. , 0.13701741, 0.00222918],
[1. , 0.10017433, 0.01146267],
[1. , 0.12755747, 0.02620832]])

For various reasons, we may want to absorb fixed effects into the matrix. This can be done with the absorb
argument of Formulation. We’ll now re-create the matrix, absorbing product-specific fixed effects. Note that the
constant column is now ignored.

[5]: absorb_formulation = pyblp.Formulation('prices + shares', absorb='product_ids')
absorb_formulation

[5]: prices + shares + Absorb[product_ids]
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[6]: demeaned_matrix = pyblp.build_matrix(absorb_formulation, product_data)
demeaned_matrix

[6]: array([[-0.01124832, -0.00052161],
[-0.00713476, -0.03144549],
[ 0.02367765, -0.01664996],
...,
[ 0.03371995, -0.00779841],
[-0.00417404, -0.0117508 ],
[-0.01195648, 0.00666695]])
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5.2.2 pyblp.build_blp_instruments

pyblp.build_blp_instruments(formulation, product_data)
Construct “sums of characteristics” excluded BLP instruments.

Traditional “sums of characteristics” BLP instruments are

𝑍BLP(𝑋) = [𝑍BLP,Other(𝑋), 𝑍BLP,Rival(𝑋)], (5.1)

in which 𝑋 is a matrix of product characteristics, 𝑍BLP,Other(𝑋) is a second matrix that consists of sums over
characteristics of non-rival goods, and 𝑍BLP,Rival(𝑋) is a third matrix that consists of sums over rival goods. All
three matrices have the same dimensions.

Note: To construct simpler, firm-agnostic instruments that are sums over characteristics of other goods, specify
a constant column of firm IDs and keep only the first half of the instrument columns.

Let 𝑥𝑗𝑡 be the vector of characteristics in 𝑋 for product 𝑗 in market 𝑡, which is produced by firm 𝑓 . That is,
𝑗 ∈ 𝐽𝑓𝑡. Then,

𝑍BLP,Other
𝑗𝑡 (𝑋) =

∑︁
𝑘∈𝐽𝑓𝑡∖{𝑗}

𝑥𝑘𝑡,

𝑍BLP,Rival
𝑗𝑡 (𝑋) =

∑︁
𝑘/∈𝐽𝑓𝑡

𝑥𝑘𝑡.
(5.2)

Note: Usually, any supply or demand shifters are added to these excluded instruments, depending on whether
they are meant to be used for demand- or supply-side estimation.

Parameters

• formulation (Formulation) – Formulation configuration for 𝑋 , the matrix of prod-
uct characteristics used to build excluded instruments. Variable names should correspond to
fields in product_data.

• product_data (structured array-like) – Each row corresponds to a product. Markets can
have differing numbers of products. The following fields are required:

– market_ids : (object) - IDs that associate products with markets.

– firm_ids : (object) - IDs that associate products with firms.

Along with market_ids and firm_ids, the names of any additional fields can be used
as variables in formulation.

Returns Traditional “sums of characteristics” BLP instruments, 𝑍BLP(𝑋).

Return type ndarray

Examples
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The online version of the following section may be easier to read.

Building “Sums of Characteristics” BLP Instruments Example

[1]: import pyblp
import numpy as np
import pandas as pd

np.set_printoptions(precision=3)
pyblp.__version__

[1]: '1.1.0'

In this example, we’ll load the automobile product data from Berry, Levinsohn, and Pakes (1995) and show how to
construct the included instruments from scratch.

[2]: product_data = pd.read_csv(pyblp.data.BLP_PRODUCTS_LOCATION)
product_data.head()

[2]: market_ids clustering_ids car_ids firm_ids region shares prices \
0 1971 AMGREM71 129 15 US 0.001051 4.935802
1 1971 AMHORN71 130 15 US 0.000670 5.516049
2 1971 AMJAVL71 132 15 US 0.000341 7.108642
3 1971 AMMATA71 134 15 US 0.000522 6.839506
4 1971 AMAMBS71 136 15 US 0.000442 8.928395

hpwt air mpd ... supply_instruments2 supply_instruments3 \
0 0.528997 0 1.888146 ... 0.0 1.705933
1 0.494324 0 1.935989 ... 0.0 1.680910
2 0.467613 0 1.716799 ... 0.0 1.801067
3 0.426540 0 1.687871 ... 0.0 1.818061
4 0.452489 0 1.504286 ... 0.0 1.933210

supply_instruments4 supply_instruments5 supply_instruments6 \
0 1.595656 87.0 -61.959985
1 1.490295 87.0 -61.959985
2 1.357703 87.0 -61.959985
3 1.261347 87.0 -61.959985
4 1.237365 87.0 -61.959985

(continues on next page)
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(continued from previous page)

supply_instruments7 supply_instruments8 supply_instruments9 \
0 0.0 46.060389 29.786989
1 0.0 46.060389 29.786989
2 0.0 46.060389 29.786989
3 0.0 46.060389 29.786989
4 0.0 46.060389 29.786989

supply_instruments10 supply_instruments11
0 0.0 1.888146
1 0.0 1.935989
2 0.0 1.716799
3 0.0 1.687871
4 0.0 1.504286

[5 rows x 33 columns]

[3]: product_data[[f'demand_instruments{i}' for i in range(8)]]

[3]: demand_instruments0 demand_instruments1 demand_instruments2 \
0 4.0 1.840967 0.0
1 4.0 1.875639 0.0
2 4.0 1.902350 0.0
3 4.0 1.943423 0.0
4 4.0 1.917475 0.0
... ... ... ...
2212 2.0 0.826512 2.0
2213 2.0 0.776462 2.0
2214 0.0 0.000000 0.0
2215 1.0 0.693796 1.0
2216 1.0 0.814913 1.0

demand_instruments3 demand_instruments4 demand_instruments5 \
0 6.844945 87.0 44.555539
1 6.797102 87.0 44.555539
2 7.016291 87.0 44.555539
3 7.045220 87.0 44.555539
4 7.228805 87.0 44.555539
... ... ... ...
2212 4.775577 128.0 57.660253

(continues on next page)
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(continued from previous page)

2213 5.278269 128.0 57.660253
2214 0.000000 130.0 58.514393
2215 3.267500 129.0 57.363973
2216 3.016154 129.0 57.363973

demand_instruments6 demand_instruments7
0 0.0 167.325082
1 0.0 167.325082
2 0.0 167.325082
3 0.0 167.325082
4 0.0 167.325082
... ... ...
2212 57.0 351.758942
2213 57.0 351.758942
2214 60.0 355.654808
2215 58.0 352.890000
2216 58.0 352.890000

[2217 rows x 8 columns]

[4]: product_data[[f'supply_instruments{i}' for i in range(12)]]

[4]: supply_instruments0 supply_instruments1 supply_instruments2 \
0 4.0 -3.109718 0.0
1 4.0 -3.041927 0.0
2 4.0 -2.986377 0.0
3 4.0 -2.894442 0.0
4 4.0 -2.953498 0.0
... ... ... ...
2212 2.0 -1.770401 2.0
2213 2.0 -1.892345 2.0
2214 0.0 0.000000 0.0
2215 1.0 -0.365578 1.0
2216 1.0 -0.204674 1.0

supply_instruments3 supply_instruments4 supply_instruments5 \
0 1.705933 1.595656 87.0
1 1.680910 1.490295 87.0
2 1.801067 1.357703 87.0
3 1.818061 1.261347 87.0

(continues on next page)
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4 1.933210 1.237365 87.0
... ... ... ...
2212 1.272566 0.511989 128.0
2213 1.483875 0.511989 128.0
2214 0.000000 0.000000 130.0
2215 0.955511 0.142876 129.0
2216 0.875469 0.089795 129.0

supply_instruments6 supply_instruments7 supply_instruments8 \
0 -61.959985 0.0 46.060389
1 -61.959985 0.0 46.060389
2 -61.959985 0.0 46.060389
3 -61.959985 0.0 46.060389
4 -61.959985 0.0 46.060389
... ... ... ...
2212 -104.631050 57.0 97.039220
2213 -104.631050 57.0 97.039220
2214 -106.327167 60.0 98.024103
2215 -106.783331 58.0 97.222743
2216 -106.783331 58.0 97.222743

supply_instruments9 supply_instruments10 supply_instruments11
0 29.786989 0.0 1.888146
1 29.786989 0.0 1.935989
2 29.786989 0.0 1.716799
3 29.786989 0.0 1.687871
4 29.786989 0.0 1.504286
... ... ... ...
2212 27.861181 38.0 2.639135
2213 27.861181 38.0 2.136442
2214 28.809765 0.0 3.518846
2215 28.407171 19.0 3.016154
2216 28.407171 19.0 3.267500

[2217 rows x 12 columns]

The demand-side “sums of characterstics” BLP instruments included in product_data can be built from scratch
with the build_blp_instruments function.

[5]: demand_instruments = pyblp.build_blp_instruments(pyblp.Formulation('1 + hpwt + air + mpd'), product_data)

(continues on next page)
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(continued from previous page)

demand_instruments

[5]: array([[ 4. , 1.841, 0. , ..., 44.556, 0. , 167.325],
[ 4. , 1.876, 0. , ..., 44.556, 0. , 167.325],
[ 4. , 1.902, 0. , ..., 44.556, 0. , 167.325],
...,
[ 0. , 0. , 0. , ..., 58.514, 60. , 355.655],
[ 1. , 0.694, 1. , ..., 57.364, 58. , 352.89 ],
[ 1. , 0.815, 1. , ..., 57.364, 58. , 352.89 ]])

The supply-side instruments from the original paper are “sums of characteristics” BLP instruments as well, but also
include a standalone mpd shifter. Because of collinearity issues, the “rival” instrument constructed from the trend
variable is excluded, and only the “own” instrument is retained.

[6]: supply_instruments = np.c_[
pyblp.build_blp_instruments(pyblp.Formulation('1 + log(hpwt) + air + log(mpg) + log(space)'), product_data),
pyblp.build_blp_instruments(pyblp.Formulation('0 + trend'), product_data)[:, 0],
product_data['mpd'],

]
supply_instruments

[6]: array([[ 4. , -3.11 , 0. , ..., 29.787, 0. , 1.888],
[ 4. , -3.042, 0. , ..., 29.787, 0. , 1.936],
[ 4. , -2.986, 0. , ..., 29.787, 0. , 1.717],
...,
[ 0. , 0. , 0. , ..., 28.81 , 0. , 3.519],
[ 1. , -0.366, 1. , ..., 28.407, 19. , 3.016],
[ 1. , -0.205, 1. , ..., 28.407, 19. , 3.268]])

132
C

hapter
5.

A
P

ID
ocum

entation



PyBLP, Release 1.1.0

5.2.3 pyblp.build_differentiation_instruments

pyblp.build_differentiation_instruments(formulation, product_data, version=’local’, inter-
act=False)

Construct excluded differentiation instruments.

Differentiation instruments in the spirit of Gandhi and Houde (2017) are

𝑍Diff(𝑋) = [𝑍Diff,Other(𝑋), 𝑍Diff,Rival(𝑋)], (5.3)

in which 𝑋 is a matrix of product characteristics, 𝑍Diff,Other(𝑋) is a second matrix that consists of sums over
functions of differences between non-rival goods, and 𝑍Diff,Rival(𝑋) is a third matrix that consists of sums over
rival goods. Without optional interaction terms, all three matrices have the same dimensions.

Note: To construct simpler, firm-agnostic instruments that are sums over functions of differences between all
different goods, specify a constant column of firm IDs and keep only the first half of the instrument columns.

Let 𝑥𝑗𝑡ℓ be characteristic ℓ in 𝑋 for product 𝑗 in market 𝑡, which is produced by firm 𝑓 . That is, 𝑗 ∈ 𝐽𝑓𝑡. Then
in the “local” version of 𝑍Diff(𝑋),

𝑍Local,Other
𝑗𝑡ℓ (𝑋) =

∑︁
𝑘∈𝐽𝑓𝑡∖{𝑗}

1(|𝑑𝑗𝑘𝑡ℓ| < SDℓ),

𝑍Local,Rival
𝑗𝑡ℓ (𝑋) =

∑︁
𝑘/∈𝐽𝑓𝑡

1(|𝑑𝑗𝑘𝑡ℓ| < SDℓ),
(5.4)

where 𝑑𝑗𝑘𝑡ℓ = 𝑥𝑘𝑡ℓ − 𝑥𝑗𝑡ℓ is the difference between products 𝑗 and 𝑘 in terms of characteristic ℓ, SDℓ is the
standard deviation of these pairwise differences computed across all markets, and 1(|𝑑𝑗𝑘𝑡ℓ| < SDℓ) indicates
that products 𝑗 and 𝑘 are close to each other in terms of characteristic ℓ.

The intuition behind this “local” version is that demand for products is often most influenced by a small number
of other goods that are very similar. For the “quadratic” version of 𝑍Diff(𝑋), which uses a more continuous
measure of the distance between goods,

𝑍Quad,Other
𝑗𝑡𝑘 (𝑋) =

∑︁
𝑘∈𝐽𝑓𝑡∖{𝑗}

𝑑2𝑗𝑘𝑡ℓ,

𝑍Quad,Rival
𝑗𝑡𝑘 (𝑋) =

∑︁
𝑘/∈𝐽𝑓𝑡

𝑑2𝑗𝑘𝑡ℓ.
(5.5)

With interaction terms, which reflect covariances between different characteristics, the summands for the “local”
versions are 1(|𝑑𝑗𝑘𝑡ℓ| < SDℓ)× 𝑑𝑗𝑘𝑡ℓ′ for all characteristics ℓ′, and the summands for the “quadratic” versions
are 𝑑𝑗𝑘𝑡ℓ × 𝑑𝑗𝑘𝑡ℓ′ for all ℓ′ ≥ ℓ.

Note: Usually, any supply or demand shifters are added to these excluded instruments, depending on whether
they are meant to be used for demand- or supply-side estimation.

Parameters

• formulation (Formulation) – Formulation configuration for 𝑋 , the matrix of prod-
uct characteristics used to build excluded instruments. Variable names should correspond to
fields in product_data.

• product_data (structured array-like) – Each row corresponds to a product. Markets can
have differing numbers of products. The following fields are required:
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– market_ids : (object) - IDs that associate products with markets.

– firm_ids : (object) - IDs that associate products with firms.

Along with market_ids and firm_ids, the names of any additional fields can be used
as variables in formulation.

• version (str, optional) – The version of differentiation instruments to construct:

– 'local' (default) - Construct the instruments in (5.4) that consider only the character-
istics of “close” products in each market.

– 'quadratic' - Construct the more continuous instruments in (5.5) that consider all
products in each market.

• interact (bool, optional) – Whether to include interaction terms between different prod-
uct characteristics, which can help capture covariances between product characteristics.

Returns Excluded differentiation instruments, 𝑍Diff(𝑋).

Return type ndarray

Examples
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The online version of the following section may be easier to read.

Building Differentiation Instruments Example

[1]: import pyblp
import numpy as np
import pandas as pd

np.set_printoptions(precision=3)
pyblp.__version__

[1]: '1.1.0'

In this example, we’ll load the automobile product data from Berry, Levinsohn, and Pakes (1995), build some very
simple excluded demand-side instruments for the problem in the spirit of Gandhi and Houde (2017), and demonstrate
how to update the problem data to use these instrument instead of the default ones.

[2]: product_data = pd.read_csv(pyblp.data.BLP_PRODUCTS_LOCATION)
product_data.head()

[2]: market_ids clustering_ids car_ids firm_ids region shares prices \
0 1971 AMGREM71 129 15 US 0.001051 4.935802
1 1971 AMHORN71 130 15 US 0.000670 5.516049
2 1971 AMJAVL71 132 15 US 0.000341 7.108642
3 1971 AMMATA71 134 15 US 0.000522 6.839506
4 1971 AMAMBS71 136 15 US 0.000442 8.928395

hpwt air mpd ... supply_instruments2 supply_instruments3 \
0 0.528997 0 1.888146 ... 0.0 1.705933
1 0.494324 0 1.935989 ... 0.0 1.680910
2 0.467613 0 1.716799 ... 0.0 1.801067
3 0.426540 0 1.687871 ... 0.0 1.818061
4 0.452489 0 1.504286 ... 0.0 1.933210

supply_instruments4 supply_instruments5 supply_instruments6 \
0 1.595656 87.0 -61.959985
1 1.490295 87.0 -61.959985
2 1.357703 87.0 -61.959985
3 1.261347 87.0 -61.959985

(continues on next page)
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(continued from previous page)

4 1.237365 87.0 -61.959985

supply_instruments7 supply_instruments8 supply_instruments9 \
0 0.0 46.060389 29.786989
1 0.0 46.060389 29.786989
2 0.0 46.060389 29.786989
3 0.0 46.060389 29.786989
4 0.0 46.060389 29.786989

supply_instruments10 supply_instruments11
0 0.0 1.888146
1 0.0 1.935989
2 0.0 1.716799
3 0.0 1.687871
4 0.0 1.504286

[5 rows x 33 columns]

We’ll first build “local” differentiation instruments, which are constructed by default, and which consist of counts of
“close” rival and non-rival products in each market. Note that we’re excluding the constant column because it yields
collinear constant columns of differentiation instruments.

[3]: formulation = pyblp.Formulation('0 + hpwt + air + mpd')
local_instruments = pyblp.build_differentiation_instruments(

formulation,
product_data

)
local_instruments

[3]: array([[ 4., 4., 4., 42., 87., 83.],
[ 4., 4., 4., 53., 87., 84.],
[ 4., 4., 4., 51., 87., 78.],
...,
[ 0., 0., 0., 86., 70., 62.],
[ 1., 1., 1., 3., 58., 91.],
[ 1., 1., 1., 13., 58., 72.]])

Next, we’ll build a more continuous “quadratic” version of the instruments, which consist of sums over squared
differences between rival and non-rival products in each market.
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[4]: quadratic_instruments = pyblp.build_differentiation_instruments(
formulation,
product_data,
version='quadratic'

)
quadratic_instruments

[4]: array([[2.132e-02, 0.000e+00, 2.191e-01, 2.011e+00, 0.000e+00, 1.208e+01],
[8.261e-03, 0.000e+00, 2.983e-01, 2.014e+00, 0.000e+00, 1.198e+01],
[6.397e-03, 0.000e+00, 1.234e-01, 2.159e+00, 0.000e+00, 1.568e+01],
...,
[0.000e+00, 0.000e+00, 0.000e+00, 2.239e+00, 6.000e+01, 1.312e+02],
[1.467e-02, 0.000e+00, 6.317e-02, 1.864e+01, 7.100e+01, 6.185e+01],
[1.467e-02, 0.000e+00, 6.317e-02, 8.961e+00, 7.100e+01, 8.819e+01]])

We could also use interact=True to include interaction terms in either version of instruments, which would help
capture covariances between different product characteristics.

To use these instruments when setting up a Problem, the existing product data has to be updated or new product data
has to be constructed. Since the existing product data is a Pandas DataFrame, it does not support matrices, so each
column of instruments has to be added individually after deleting the existing instruments.

[5]: for i in range(8):
del product_data[f'demand_instruments{i}']

for i, column in enumerate(local_instruments.T):
product_data[f'demand_instruments{i}'] = column

product_data

[5]: market_ids clustering_ids car_ids firm_ids region shares \
0 1971 AMGREM71 129 15 US 0.001051
1 1971 AMHORN71 130 15 US 0.000670
2 1971 AMJAVL71 132 15 US 0.000341
3 1971 AMMATA71 134 15 US 0.000522
4 1971 AMAMBS71 136 15 US 0.000442
... ... ... ... ... ... ...
2212 1990 VV74085 5584 6 EU 0.000488
2213 1990 VV760G87 5585 6 EU 0.000091
2214 1990 YGGVPL90 5589 23 EU 0.000067
2215 1990 PS911C90 5590 12 EU 0.000039
2216 1990 PS94490 5592 12 EU 0.000025

(continues on next page)
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(continued from previous page)

prices hpwt air mpd ... supply_instruments8 \
0 4.935802 0.528997 0 1.888146 ... 46.060389
1 5.516049 0.494324 0 1.935989 ... 46.060389
2 7.108642 0.467613 0 1.716799 ... 46.060389
3 6.839506 0.426540 0 1.687871 ... 46.060389
4 8.928395 0.452489 0 1.504286 ... 46.060389
... ... ... ... ... ... ...
2212 16.140015 0.385917 1 2.639135 ... 97.039220
2213 25.986993 0.435967 1 2.136442 ... 97.039220
2214 3.393267 0.358289 0 3.518846 ... 98.024103
2215 44.758990 0.814913 1 3.016154 ... 97.222743
2216 32.058148 0.693796 1 3.267500 ... 97.222743

supply_instruments9 supply_instruments10 supply_instruments11 \
0 29.786989 0.0 1.888146
1 29.786989 0.0 1.935989
2 29.786989 0.0 1.716799
3 29.786989 0.0 1.687871
4 29.786989 0.0 1.504286
... ... ... ...
2212 27.861181 38.0 2.639135
2213 27.861181 38.0 2.136442
2214 28.809765 0.0 3.518846
2215 28.407171 19.0 3.016154
2216 28.407171 19.0 3.267500

demand_instruments0 demand_instruments1 demand_instruments2 \
0 4.0 4.0 4.0
1 4.0 4.0 4.0
2 4.0 4.0 4.0
3 4.0 4.0 4.0
4 4.0 4.0 4.0
... ... ... ...
2212 2.0 2.0 2.0
2213 2.0 2.0 2.0
2214 0.0 0.0 0.0
2215 1.0 1.0 1.0
2216 1.0 1.0 1.0

(continues on next page)
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(continued from previous page)

demand_instruments3 demand_instruments4 demand_instruments5
0 42.0 87.0 83.0
1 53.0 87.0 84.0
2 51.0 87.0 78.0
3 52.0 87.0 77.0
4 52.0 87.0 69.0
... ... ... ...
2212 102.0 57.0 109.0
2213 112.0 57.0 86.0
2214 86.0 70.0 62.0
2215 3.0 58.0 91.0
2216 13.0 58.0 72.0

[2217 rows x 31 columns]

Any data type that has fields can be used as product data. An alternative way to specify problem_data for Problem
initialization is to simply use a dict, where fields can be matrices. For example, we could use the following dict,
which includes both the new demand instruments as well as a few other variables that might be used when setting up
the problem.

[6]: product_data_dict = {k: product_data[k] for k in ['market_ids', 'firm_ids', 'shares', 'prices', 'hpwt', 'air', 'mpd']}
product_data_dict['demand_instruments'] = local_instruments
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5.2.4 pyblp.build_id_data

pyblp.build_id_data(T, J, F)
Build a balanced panel of market and firm IDs.

This function can be used to build id_data for Simulation initialization.

Parameters

• T (int) – Number of markets.

• J (int) – Number of products in each market.

• F (int) – Number of firms. If J is divisible by F, firms produce J / F products in each
market. Otherwise, firms with smaller IDs will produce excess products.

Returns

IDs that associate products with markets and firms. Each of the T * J rows corresponds to a
product. Fields:

• market_ids : (object) - Market IDs that take on values from 0 to T - 1.

• firm_ids : (object) - Firm IDs that take on values from 0 to F - 1.

Return type recarray

Examples
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The online version of the following section may be easier to read.

Building ID Data Example

[1]: import pyblp
import numpy as np

np.set_printoptions(linewidth=1)
pyblp.__version__

[1]: '1.1.0'

In this example, we’ll build a small panel of market and firm IDs.

[2]: id_data = pyblp.build_id_data(T=2, J=5, F=4)
id_data

[2]: rec.array([([0], [0]),
([0], [0]),
([0], [1]),
([0], [2]),
([0], [3]),
([1], [0]),
([1], [0]),
([1], [1]),
([1], [2]),
([1], [3])],
dtype=[('market_ids', 'O', (1,)), ('firm_ids', 'O', (1,))])
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5.2.5 pyblp.build_ownership

pyblp.build_ownership(product_data, kappa_specification=None)
Build ownership matrices, 𝑂.

Ownership or product holding matrices are defined by their cooperation matrix counterparts, 𝜅. For each market
𝑡, H𝑗𝑘 = 𝜅𝑓𝑔 where 𝑗 ∈ 𝐽𝑓𝑡, the set of products produced by firm 𝑓 in the market, and similarly, 𝑔 ∈ 𝐽𝑔𝑡.

Parameters

• product_data (structured array-like) – Each row corresponds to a product. Markets
can have differing numbers of products. The following fields are required (except for
firm_ids when kappa_specification is one of the special cases):

– market_ids : (object) - IDs that associate products with markets.

– firm_ids : (object) - IDs that associate products with firms. This field is ignored if
kappa_specification is one of the special cases and not a function.

• kappa_specification (str or callable, optional) – Specification for each market’s
cooperation matrix, 𝜅, which can either be a general function or a string that implements a
special case. The general function is is of the following form:

kappa(f, g) -> value

where value is H𝑗𝑘 and both f and g are firm IDs from the firm_ids field of
product_data.

The default specification, lambda: f, g: int(f == g), constructs traditional own-
ership matrices. That is, 𝜅 = 𝐼 , the identify matrix, implies that H𝑗𝑘 is 1 if the same firm
produces products 𝑗 and 𝑘, and is 0 otherwise.

If firm_ids happen to be indices for an actual 𝜅 matrix, lambda f, g: kappa[f,
g] will build ownership matrices according to the matrix kappa.

When one of the special cases is specified, firm_ids in product_data are not required
and if specified will be ignored:

– 'monopoly' - Monopoly ownership matrices are all ones: H𝑗𝑘 = 1 for all 𝑗 and 𝑘.

– 'single' - Single product firm ownership matrices are identity matrices: H𝑗𝑘 = 1 if
𝑗 = 𝑘 and 0 otherwise.

Returns Stacked 𝐽𝑡 × 𝐽𝑡 ownership matrices, H , for each market 𝑡. If a market has fewer products
than others, extra columns will contain numpy.nan.

Return type ndarray

Examples
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The online version of the following section may be easier to read.

Building Ownership Matrices Example

[1]: import pyblp
import numpy as np

np.set_printoptions(threshold=100)
pyblp.__version__

[1]: '1.1.0'

In this example, we’ll use the IDs created in the building ID data example to build a stack of standard ownership
matrices. We’ll delete the first data row to demonstrate what ownership matrices should look like when markets have
varying numbers of products.

[2]: id_data = pyblp.build_id_data(T=2, J=5, F=4)
id_data = id_data[1:]
standard_ownership = pyblp.build_ownership(id_data)
standard_ownership

[2]: array([[ 1., 0., 0., 0., nan],
[ 0., 1., 0., 0., nan],
[ 0., 0., 1., 0., nan],
[ 0., 0., 0., 1., nan],
[ 1., 1., 0., 0., 0.],
[ 1., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 1., 0.],
[ 0., 0., 0., 0., 1.]])

We’ll now modify the default 𝜅 specification so that the elements associated with firm IDs 0 and 1 are equal to 0.5.

[3]: def kappa_specification(f, g):
if f == g:

return 1
return 0.5 if f < 2 and g < 2 else 0

We can use this specification to build a stack of alternative ownership matrices.
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[4]: alternative_ownership = pyblp.build_ownership(id_data, kappa_specification)
alternative_ownership

[4]: array([[1. , 0.5, 0. , 0. , nan],
[0.5, 1. , 0. , 0. , nan],
[0. , 0. , 1. , 0. , nan],
[0. , 0. , 0. , 1. , nan],
[1. , 1. , 0.5, 0. , 0. ],
[1. , 1. , 0.5, 0. , 0. ],
[0.5, 0.5, 1. , 0. , 0. ],
[0. , 0. , 0. , 1. , 0. ],
[0. , 0. , 0. , 0. , 1. ]])

In addition to specifying a custom function, there are also a couple of special case strings that efficiently construct
monopoly and single-product firm ownership matrices.

[5]: monopoly_ownership = pyblp.build_ownership(id_data, 'monopoly')
monopoly_ownership

[5]: array([[ 1., 1., 1., 1., nan],
[ 1., 1., 1., 1., nan],
[ 1., 1., 1., 1., nan],
[ 1., 1., 1., 1., nan],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.],
[ 1., 1., 1., 1., 1.]])

[6]: single_ownership = pyblp.build_ownership(id_data, 'single')
single_ownership

[6]: array([[ 1., 0., 0., 0., nan],
[ 0., 1., 0., 0., nan],
[ 0., 0., 1., 0., nan],
[ 0., 0., 0., 1., nan],
[ 1., 0., 0., 0., 0.],
[ 0., 1., 0., 0., 0.],
[ 0., 0., 1., 0., 0.],
[ 0., 0., 0., 1., 0.],
[ 0., 0., 0., 0., 1.]])
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5.2.6 pyblp.build_integration

pyblp.build_integration(integration, dimensions)
Build nodes and weights for integration over agent choice probabilities.

This function can be used to build custom agent_data for Problem initialization. Specifically, this function
affords more flexibility than passing an Integration configuration directly to Problem. For example, if
agents have unobserved tastes over only a subset of demand-side nonlinear product characteristics (i.e., if sigma
in Problem.solve() has columns of zeros), this function can be used to build agent data with fewer columns
of integration nodes than the number of unobserved product characteristics, 𝐾2. This function can also be used
to construct nodes that can be transformed into demographic variables.

To build nodes and weights for multiple markets, this function can be called multiple times, once for each
market.

Parameters

• integration (Integration) – Integration configuration for how to build nodes and
weights for integration.

• dimensions (int) – Number of dimensions over which to integrate, or equivalently, the
number of columns of integration nodes. When an Integration configuration is passed
directly to Problem, this is the number of demand-side nonlinear product characteristics,
𝐾2.

Returns

Nodes and weights for integration over agent utilities. Fields:

• weights : (numeric) - Integration weights, 𝑤.

• nodes : (numeric) - Unobserved agent characteristics called integration nodes, 𝜈.

Return type recarray

Examples
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The online version of the following section may be easier to read.

Building Nodes and Weights for Integration Example

[1]: import pyblp

pyblp.__version__

[1]: '1.1.0'

In this example, we’ll build nodes and weights for integration over agent choice probabilities according to a In-
tegration configuration. We’ll construct a sparse grid of nodes and weights according to a level-5 Gauss-Hermite
quadrature rule.

[2]: integration = pyblp.Integration('grid', 5)
integration

[2]: Configured to construct nodes and weights in a sparse grid according to the level-5 Gauss-Hermite rule with options {}.

Usually, this configuration should be passed directly to Problem, which will create a sparse grid of dimension 𝐾2,
the number of demand-side nonlinear product characteristics. Alternatively, we can build the sparse grid ourselves
and pass the constructed agent data to Problem, possibly after modifying the nodes and weights. If we want to allow
agents to have heterogeneous tastes over 2 product characteristics, we’ll need a grid of dimension 2.

[3]: agent_data = pyblp.build_integration(integration, 2)
agent_data.nodes.shape

[3]: (53, 2)

[4]: agent_data.weights.shape

[4]: (53, 1)

If we wanted to construct nodes and weights for each market, we could call build_integration once for each market,
add a column of market IDs, and stack the arrays.

146
C

hapter
5.

A
P

ID
ocum

entation

https://pyblp.readthedocs.io/en/latest/_notebooks/api/build_integration.html


PyBLP, Release 1.1.0

5.2.7 pyblp.data_to_dict

pyblp.data_to_dict(data, ignore_empty=True)
Convert a NumPy record array into a dictionary.

Most data in PyBLP are structured as NumPy record arrays (e.g., Problem.products and
SimulationResults.product_data) which can be cumbersome to work with when working with data
types that can’t represent matrices, such as the pandas.DataFrame.

This function converts record arrays created by PyBLP into dictionaries that map field names to one-dimensional
arrays. Matrices in the original record array (e.g., demand_instruments) are split into as many fields as
there are columns (e.g., demand_instruments0, demand_instruments1, and so on).

Parameters

• data (recarray) – Record array created by PyBLP.

• ignore_empty (bool, optional) – Whether to ignore matrices with zero size. By default,
these are ignored.

Returns The data re-structured as a dictionary.

Return type dict

Examples
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The online version of the following section may be easier to read.

Converting Data into a Dictionary Example

[1]: import pyblp
import numpy as np
import pandas as pd

np.set_printoptions(precision=1)
pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__

[1]: '1.1.0'

In this example, we’ll convert a dataset constructed by PyBLP into a dictionary that can more easily ingested by other
Python packages. Note that you can also pickle most PyBLP objects, which may be more convenient.

First we’ll initialize a Problem with the fake cereal data from Nevo (2000a).

[2]: product_data = pd.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION)
formulation = pyblp.Formulation('0 + prices', absorb='C(product_ids)')
problem = pyblp.Problem(formulation, product_data)
problem

[2]: Dimensions:
================================
T N F K1 MD ED

--- ---- --- ---- ---- ----
94 2256 5 1 20 1
================================

Formulations:
==================================

Column Indices: 0
-------------------------- ------
X1: Linear Characteristics prices
==================================
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The Problem.products attribute is a typical example of the type of NumPy record array that PyBLP uses to structure
data throughout the package.

[3]: problem.products

[3]: rec.array([(['C01Q1'], [1], ['F1B04'], [], [], ['F1B04'], [], [], [0.], [-2.5e-01, 4.1e-02, -1.6e+00, -2.7e-01, -1.0e-
→˓02, 6.9e-03, -9.2e-01, 5.1e-03, 1.3e-01, 2.8e-01, 2.0e-01, 2.5e-01, -4.1e-03, -3.6e-02, 7.1e-02, 1.2e-02, 1.
→˓7e-02, -1.5e-02, 8.1e-02, -1.6e-02], [], [], [-0.], [], [], [0.1]),

(['C01Q1'], [1], ['F1B06'], [], [], ['F1B06'], [], [], [0.], [-2.1e-01, 5.7e-02, -1.0e+01, 1.5e-01, 4.0e-
→˓02, 6.1e-03, 1.1e+00, 8.6e-02, 1.1e-01, -2.7e-02, -1.2e+00, -1.3e-01, 2.6e-03, -6.8e-03, -4.5e-02, 6.7e-05, 3.
→˓1e-02, 5.8e-03, -3.2e-02, -1.1e-02], [], [], [-0.], [], [], [0.1]),

(['C01Q1'], [1], ['F1B07'], [], [], ['F1B07'], [], [], [0.], [-2.1e-01, 4.6e-02, -2.3e+00, -3.0e-02, 2.4e-
→˓03, -1.3e-02, 3.3e-01, -1.7e-01, -2.3e-01, 3.1e-01, 1.0e+00, 2.0e-01, 9.9e-04, 1.8e-02, 8.2e-02, 3.5e-02, 2.
→˓8e-02, 1.3e-02, 4.7e-02, 2.7e-02], [], [], [ 0.], [], [], [0.1]),

...,
(['C65Q2'], [4], ['F4B10'], [], [], ['F4B10'], [], [], [0.], [-1.2e-01, -3.2e-04, -1.1e+00, 1.8e-01, 3.6e-

→˓02, -1.9e-02, 2.4e-01, 5.4e-02, -3.2e-01, 8.7e-02, 2.7e+00, 1.6e-01, 8.8e-04, 3.8e-02, 1.9e-02, -5.2e-02, -1.
→˓8e-02, 3.7e-02, -5.8e-02, 3.6e-02], [], [], [ 0.], [], [], [0.1]),

(['C65Q2'], [4], ['F4B12'], [], [], ['F4B12'], [], [], [0.], [-2.0e-01, 3.3e-04, -5.1e-01, -4.5e-03, 3.2e-
→˓02, 6.1e-03, 5.7e-01, 2.3e-02, 1.1e-01, 1.9e-01, 2.1e+00, 1.3e-01, -8.1e-03, -1.2e-02, -3.6e-02, -4.3e-03, -1.
→˓7e-02, -6.6e-03, 7.2e-03, -1.5e-02], [], [], [-0.], [], [], [0.1]),

(['C65Q2'], [6], ['F6B18'], [], [], ['F6B18'], [], [], [0.], [-1.4e-01, 3.5e-03, -2.9e-01, 2.9e-01, 3.9e-
→˓02, 2.0e-02, -1.9e+00, -4.0e-02, 3.8e-01, 1.1e-01, 3.4e+00, 1.1e-01, -6.1e-03, -1.2e-03, -4.7e-02, -2.4e-02, -2.
→˓1e-02, -2.9e-02, -2.6e-02, -2.5e-02], [], [], [-0.], [], [], [0.1])],

dtype=[('market_ids', 'O', (1,)), ('firm_ids', 'O', (1,)), ('demand_ids', 'O', (1,)), ('supply_ids', 'O', (0,
→˓)), ('nesting_ids', 'O', (0,)), ('product_ids', 'O', (1,)), ('clustering_ids', 'O', (0,)), ('ownership', '<f8', (0,)),
→˓ ('shares', '<f8', (1,)), ('ZD', '<f8', (20,)), ('ZS', '<f8', (0,)), ('ZC', '<f8', (0,)), (((prices,), 'X1'), '<f8',
→˓(1,)), (((), 'X2'), '<f8', (0,)), (((), 'X3'), '<f8', (0,)), ('prices', '<f8', (1,))])

This is hard to read, and if we try to convert it into a pandas.DataFrame, we’ll get an error. This is because
pandas.DataFrame doesn’t support matrices.

Instead, we’ll use the data_to_dict function to first convert the record array into a dictionary, which can be easily
ingested by Pandas. Matrices are converted into multiple fields, one for each column.

[4]: x = pyblp.data_to_dict(problem.products)
print({k: v.size for k, v in x.items()})

df = pd.DataFrame(pyblp.data_to_dict(problem.products))
df

{'market_ids': 2256, 'firm_ids': 2256, 'demand_ids': 2256, 'product_ids': 2256, 'shares': 2256, 'ZD0': 2256, 'ZD1':
→˓2256, 'ZD2': 2256, 'ZD3': 2256, 'ZD4': 2256, 'ZD5': 2256, 'ZD6': 2256, 'ZD7': 2256, 'ZD8': 2256, 'ZD9': 2256, 'ZD10':
→˓2256, 'ZD11': 2256, 'ZD12': 2256, 'ZD13': 2256, 'ZD14': 2256, 'ZD15': 2256, 'ZD16': 2256, 'ZD17': 2256, 'ZD18': 2256,
→˓'ZD19': 2256, 'X1': 2256, 'prices': 2256}

(continues on next page)
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(continued from previous page)

[4]: market_ids firm_ids demand_ids product_ids shares ZD0 ZD1 \
0 C01Q1 1 F1B04 F1B04 0.012417 -0.249518 0.040943
1 C01Q1 1 F1B06 F1B06 0.007809 -0.205951 0.057100
2 C01Q1 1 F1B07 F1B07 0.012995 -0.212031 0.046246
3 C01Q1 1 F1B09 F1B09 0.005770 -0.170725 0.049143
4 C01Q1 1 F1B11 F1B11 0.017934 -0.164983 0.047168
... ... ... ... ... ... ... ...
2251 C65Q2 3 F3B14 F3B14 0.024702 -0.126940 0.002240
2252 C65Q2 4 F4B02 F4B02 0.007914 -0.109756 0.011192
2253 C65Q2 4 F4B10 F4B10 0.002229 -0.119689 -0.000324
2254 C65Q2 4 F4B12 F4B12 0.011463 -0.201890 0.000334
2255 C65Q2 6 F6B18 F6B18 0.026208 -0.139453 0.003468

ZD2 ZD3 ZD4 ... ZD12 ZD13 ZD14 \
0 -1.577566 -0.269073 -0.010004 ... -0.004142 -0.035593 0.070587
1 -10.383954 0.150476 0.039816 ... 0.002585 -0.006776 -0.045453
2 -2.278160 -0.029976 0.002390 ... 0.000992 0.018425 0.081555
3 -1.159784 -0.244789 0.002848 ... -0.004274 0.026440 0.064169
4 -4.737563 -0.070873 0.012273 ... -0.004694 -0.029179 -0.000454
... ... ... ... ... ... ... ...
2251 -1.067171 0.150626 0.037091 ... -0.004787 -0.012775 -0.059399
2252 0.458133 0.066193 0.006838 ... 0.009385 0.037487 0.086225
2253 -1.109521 0.175027 0.036227 ... 0.000884 0.037634 0.019278
2254 -0.507311 -0.004538 0.031569 ... -0.008093 -0.011750 -0.036333
2255 -0.285143 0.291132 0.039259 ... -0.006138 -0.001181 -0.046888

ZD15 ZD16 ZD17 ZD18 ZD19 X1 prices
0 0.011768 0.017287 -0.015031 0.081201 -0.015833 -0.011248 0.072088
1 0.000067 0.031229 0.005841 -0.032121 -0.010614 -0.007135 0.114178
2 0.034975 0.027932 0.013156 0.047484 0.026800 0.023678 0.132391
3 0.021496 0.032372 0.033063 0.045501 0.036154 0.029725 0.130344
4 -0.045272 -0.025446 -0.006794 -0.007560 -0.011364 -0.015585 0.154823
... ... ... ... ... ... ... ...
2251 0.043775 0.059339 -0.021934 0.034592 -0.021052 -0.017337 0.126086
2252 0.060856 0.028264 0.051264 0.032965 0.033324 0.044542 0.199167
2253 -0.052403 -0.018107 0.036733 -0.057647 0.035662 0.033720 0.137017
2254 -0.004333 -0.017427 -0.006647 0.007228 -0.015403 -0.004174 0.100174
2255 -0.023637 -0.021410 -0.029402 -0.025971 -0.025435 -0.011956 0.127557

(continues on next page)
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[2256 rows x 27 columns]
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5.2.8 pyblp.save_pickle

pyblp.save_pickle(x, path)
Save an object as a pickle file.

This is a simple wrapper around pickle.dump.

Parameters

• x (object) – Object to be pickled.

• path (str or Path) – File path to which the object will be saved.

5.2.9 pyblp.read_pickle

pyblp.read_pickle(path)
Load a pickled object into memory.

This is a simple wrapper around pickle.load.

Parameters path (str or Path) – File path of a pickled object.

Returns The unpickled object.

Return type object

5.3 Problem Class

Given data and appropriate configurations, a BLP-type problem can be structured by initializing the following class.

Problem(product_formulations, product_data) A BLP-type problem.

5.3.1 pyblp.Problem

class pyblp.Problem(product_formulations, product_data, agent_formulation=None,
agent_data=None, integration=None, rc_types=None, epsilon_scale=1.0,
costs_type=’linear’, add_exogenous=True)

A BLP-type problem.

This class is initialized with relevant data and solved with Problem.solve().

Parameters

• product_formulations (Formulation or sequence of Formulation) – Formulation
configuration or a sequence of up to three Formulation configurations for the matrix of
demand-side linear product characteristics, 𝑋1, for the matrix of demand-side nonlinear
product characteristics, 𝑋2, and for the matrix of supply-side characteristics, 𝑋3, respec-
tively. If the formulation for 𝑋3 is not specified or is None, a supply side will not be
estimated. Similarly, if the formulation for 𝑋2 is not specified or is None, the logit (or
nested logit) model will be estimated.

Variable names should correspond to fields in product_data. The shares variable
should not be included in the formulations for 𝑋1 or 𝑋2. The formulation for 𝑋3 can
include shares to allow marginal costs to depend on quantity.

152 Chapter 5. API Documentation



PyBLP, Release 1.1.0

The prices variable should not be included in the formulation for 𝑋3, but it should
be included in the formulation for 𝑋1 or 𝑋2 (or both). The absorb argument of
Formulation can be used to absorb fixed effects into 𝑋1 and 𝑋3, but not 𝑋2. Charac-
teristics in 𝑋2 should generally be included in 𝑋1. The typical exception is characteristics
that are collinear with fixed effects that have been absorbed into 𝑋1.

By default, characteristics in 𝑋1 that do not involve prices, 𝑋ex
1 , will be combined with

excluded demand-side instruments (specified below) to create the full set of demand-side
instruments, 𝑍𝐷. Any fixed effects absorbed into 𝑋1 will also be absorbed into 𝑍𝐷. Sim-
ilarly, characteristics in 𝑋3 that do not involve shares, 𝑋ex

3 , will be combined with the
excluded supply-side instruments to create 𝑍𝑆 , and any fixed effects absorbed into 𝑋3 will
also be absorbed into 𝑍𝑆 . The add_exogenous flag can be used to disable this behavior.

Warning: Characteristics that involve prices, 𝑝, or shares, 𝑠, should always be
formulated with the prices and shares variables, respectively. If another name
is used, Problem will not understand that the characteristic is endogenous, so it
will be erroneously included in 𝑍𝐷 or 𝑍𝑆 , and derivatives computed with respect to
prices or shares will likely be wrong. For example, to include a 𝑝2 characteristic, in-
clude I(prices**2) in a formula instead of manually constructing and including a
prices_squared variable.

• product_data (structured array-like) – Each row corresponds to a product. Markets can
have differing numbers of products. The following fields are required:

– market_ids : (object) - IDs that associate products with markets.

– shares : (numeric) - Market shares, 𝑠, which should be between zero and one, exclusive.
Outside shares should also be between zero and one. Shares in each market should sum
to less than one.

– prices : (numeric) - Product prices, 𝑝.

If a formulation for 𝑋3 is specified in product_formulations, firm IDs are also re-
quired, since they will be used to estimate the supply side of the problem:

– firm_ids : (object, optional) - IDs that associate products with firms.

Excluded instruments are typically specified with the following fields:

– demand_instruments : (numeric) - Excluded demand-side instruments, which, together
with the formulated exogenous demand-side linear product characteristics, 𝑋ex

1 , consti-
tute the full set of demand-side instruments, 𝑍𝐷. To instead specify the full matrix 𝑍𝐷,
set add_exogenous to False.

– supply_instruments : (numeric, optional) - Excluded supply-side instruments, which,
together with the formulated exogenous supply-side characteristics, 𝑋ex

3 , constitute the
full set of supply-side instruments, 𝑍𝑆 . To instead specify the full matrix 𝑍𝑆 , set
add_exogenous to False.

– covariance_instruments : (numeric, optional) - Covariance instruments 𝑍𝐶 . If speci-
fied, additional moments 𝐸[𝑔𝐶,𝑗𝑡] = 𝐸[𝜉𝑗𝑡𝜔𝑗𝑡𝑍𝐶,𝑗𝑡] = 0 will be added, as in MacKay
and Miller (2023).

If any fixed effects are absorbed, 𝜉𝑗𝑡 and 𝜔𝑗𝑡 in these new covariance moments are re-
placed with ∆𝜉𝑗𝑡 and/or ∆𝜔𝑗𝑡 in (3.32). The default 2SLS weighting matrix will have an
additional (𝑍 ′

𝐶𝑍𝐶/𝑁)−1 block after the first two.

5.3. Problem Class 153



PyBLP, Release 1.1.0

Warning: Covariance restrictions are still an experimental feature. The way in which
they are implemented and used may change somewhat in future releases.

Note: Using covariance restrictions to identify a parameter on price can sometimes yield
two solutions, where the “upper” solution may be positive (i.e., implying upward-sloping
demand). See MacKay and Miller (2023) for more discussion of this point. In these cases
when the “lower” root is the correct solution, consider imposing a one-sided bound (e.g.,
zero) on the parameter on price to ensure the appropriate sign using beta_bounds (if
the parameter is in beta) or replacing it with a lognormal coefficient on price via the
rc_type argument to Problem.

Note: In the current implementation, these covariance restrictions only affect the nonlin-
ear parameters. The linear parameters are estimated using other moments. In the case of
overidentification, the estimator may not be fully efficient because of this implementation
decision.

The recommendation in Conlon and Gortmaker (2020) is to start with differ-
entiation instruments of Gandhi and Houde (2017), which can be built with
build_differentiation_instruments(), and then compute feasible optimal
instruments with ProblemResults.compute_optimal_instruments() in the
second stage.

For guidance on how to construct instruments and add them to product data, refer
to the examples in the documentation for the build_blp_instruments() and
build_differentiation_instruments() functions.

If firm_ids are specified, custom ownership matrices can be specified as well:

– ownership : (numeric, optional) - Custom stacked 𝐽𝑡 × 𝐽𝑡 ownership or product hold-
ing matrices, H , for each market 𝑡, which can be built with build_ownership().
By default, standard ownership matrices are built only when they are needed to reduce
memory usage. If specified, there should be as many columns as there are products in the
market with the most products. Rightmost columns in markets with fewer products will
be ignored.

Note: Fields that can have multiple columns (demand_instruments,
supply_instruments, and ownership) can either be matrices or can be bro-
ken up into multiple one-dimensional fields with column index suffixes that start at
zero. For example, if there are three columns of excluded demand-side instruments,
a demand_instruments field with three columns can be replaced by three one-
dimensional fields: demand_instruments0, demand_instruments1, and
demand_instruments2.

To estimate a nested logit or random coefficients nested logit (RCNL) model, nesting groups
must be specified:

– nesting_ids (object, optional) - IDs that associate products with nesting groups. When
these IDs are specified, rho must be specified in Problem.solve() as well.

It may be convenient to define IDs for different products:
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– product_ids (object, optional) - IDs that identify products within markets. There can be
multiple columns.

Finally, clustering groups can be specified to account for within-group correlation while
updating the weighting matrix and estimating standard errors:

– clustering_ids (object, optional) - Cluster group IDs, which will be used if W_type or
se_type in Problem.solve() is 'clustered'.

Along with market_ids, firm_ids, nesting_ids, product_ids,
clustering_ids, and prices, the names of any additional fields can typically
be used as variables in product_formulations. However, there are a few variable
names such as 'X1', which are reserved for use by Products.

• agent_formulation (Formulation, optional) – Formulation configuration for the
matrix of observed agent characteristics called demographics, 𝑑, which will only be included
in the model if this formulation is specified. Since demographics are only used if there are
demand-side nonlinear product characteristics, this formulation should only be specified if
𝑋2 is formulated in product_formulations. Variable names should correspond to
fields in agent_data. See the information under agent_data for how to give fields for
product-specific demographics 𝑑𝑖𝑗𝑡.

• agent_data (structured array-like, optional) – Each row corresponds to an agent. Mar-
kets can have differing numbers of agents. Since simulated agents are only used if there
are demand-side nonlinear product characteristics, agent data should only be specified if 𝑋2

is formulated in product_formulations. If agent data are specified, market IDs are
required:

– market_ids : (object) - IDs that associate agents with markets. The set of distinct IDs
should be the same as the set in product_data. If integration is specified, there
must be at least as many rows in each market as the number of nodes and weights that are
built for the market.

If integration is not specified, the following fields are required:

– weights : (numeric, optional) - Integration weights, 𝑤, for integration over agent choice
probabilities.

– nodes : (numeric, optional) - Unobserved agent characteristics called integration nodes,
𝜈. If there are more than 𝐾2 columns (the number of demand-side nonlinear product char-
acteristics), only the first 𝐾2 will be retained. If any columns of sigma in Problem.
solve() are fixed at zero, only the first few columns of these nodes will be used.

The convenience function build_integration() can be useful when constructing cus-
tom nodes and weights.

Note: If nodes has multiple columns, it can be specified as a matrix or broken up into
multiple one-dimensional fields with column index suffixes that start at zero. For example,
if there are three columns of nodes, a nodes field with three columns can be replaced by
three one-dimensional fields: nodes0, nodes1, and nodes2.

It may be convenient to define IDs for different agents:

– agent_ids (object, optional) - IDs that identify agents within markets. There can be
multiple of the same ID within a market.

Along with market_ids and agent_ids, the names of any additional fields can be
typically be used as variables in agent_formulation. Exceptions are the names
'demographics' and 'availability', which are reserved for use by Agents.
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In addition to standard demographic variables 𝑑𝑖𝑡, it is also possible to specify product-
specific demographics 𝑑𝑖𝑗𝑡. A typical example is geographic distance of agent 𝑖 from prod-
uct 𝑗. If agent_formulation has, for example, 'distance', instead of including a
single 'distance' field in agent_data, one should instead include 'distance0',
'distance1', 'distance2' and so on, where the index corresponds to the order in
which products appear within market in product_data. For example, 'distance5'
should measure the distance of agents to the fifth product within the market, as ordered in
product_data. The last index should be the number of products in the largest market,
minus one. For markets with fewer products than this maximum number, latter columns will
be ignored.

Finally, by default each agent 𝑖 in market 𝑡 is faced with the same choice set of product
𝑗, but it is possible to specify agent-specific availability 𝑎𝑖𝑗𝑡 much in the same way that
product-specific demographics are specified. To do so, the following field can be specified:

– availability : (numeric, optional) - Agent-specific product availability, 𝑎. Choice proba-
bilities in (3.5) are modified according to

𝑠𝑖𝑗𝑡 =
𝑎𝑖𝑗𝑡 exp𝑉𝑖𝑗𝑡

1 +
∑︀

𝑘∈𝐽𝑡
𝑎𝑖𝑗𝑡 exp𝑉𝑖𝑘𝑡

, (5.6)

and similarly for the nested logit model and consumer surplus calculations. By default,
all 𝑎𝑖𝑗𝑡 = 1. To have a product 𝑗 be unavailable to agent 𝑖, set 𝑎𝑖𝑗𝑡 = 0.

Agent-specific availability is specified in the same way that product-specific demo-
graphics are specified. In agent_data, one can include 'availability0',
'availability1', 'availability2', and so on, where the index corresponds
to the order in which products appear within market in product_data. The last index
should be the number of products in the largest market, minus one. For markets with
fewer products than this maximum number, latter columns will be ignored.

• integration (Integration, optional) – Integration configuration for how to build
nodes and weights for integration over agent choice probabilities, which will replace any
nodes and weights fields in agent_data. This configuration is required if nodes
and weights in agent_data are not specified. It should not be specified if 𝑋2 is not
formulated in product_formulations.

If this configuration is specified, 𝐾2 columns of nodes (the number of demand-side nonlin-
ear product characteristics) will be built. However, if sigma in Problem.solve() is
left unspecified or specified with columns fixed at zero, fewer columns will be used.

• rc_types (sequence of str, optional) – Random coefficient types:

– 'linear' (default) - The random coefficient is as defined in (3.3). All elliptical distri-
butions are supported, including the normal distribution.

– 'log' - The random coefficient’s column in (3.3) is exponentiated before being pre-
multiplied by 𝑋2. It will take on values bounded from below by zero. All log-elliptical
distributions are supported, including the lognormal distribution.

– 'logit' - The random coefficient’s column in (3.3) is passed through the inverse logit
function before being pre-multiplied by 𝑋2. It will take on values bounded from below
by zero and above by one.

The list should have as many strings as there are columns in 𝑋2. Each string determines the
type of the random coefficient on the corresponding product characteristic in 𝑋2.

A typical example of when to use 'log' is to have a lognormal coefficient on prices.
Implementing this typically involves having an I(-prices) in the formulation for 𝑋2,
and instead of including prices in 𝑋1, including a 1 in the agent_formulation.

156 Chapter 5. API Documentation



PyBLP, Release 1.1.0

Then the corresponding coefficient in Π will serve as the mean parameter for the lognormal
random coefficient on negative prices, −𝑝𝑗𝑡.

• epsilon_scale (float, optional) – Factor by which the Type I Extreme Value idiosyn-
cratic preference term, 𝜖𝑖𝑗𝑡, is scaled. By default, 𝜖𝑖𝑗𝑡 is not scaled. The typical use of
this parameter is to approximate the pure characteristics model of Berry and Pakes (2007)
by choosing a value smaller than 1.0. As this scaling factor approaches zero, the model
approaches the pure characteristics model in which there is no idiosyncratic preference term.

In practice, this is implemented by dividing 𝑉𝑖𝑗𝑡 = 𝛿𝑗𝑡 + 𝜇𝑖𝑗𝑡 by the scaling factor when
solving for the mean utility 𝛿𝑗𝑡. For small scaling factors, this leads to large values of 𝑉𝑖𝑗𝑡,
which when exponentiated in the logit expression can lead to overflow issues discussed in
Berry and Pakes (2007). The safe versions of the contraction mapping discussed in the
documentation for fp_type in Problem.solve() (which is used by default) eliminate
overflow issues at the cost of introducing fewer (but still common for a small scaling factor)
underflow issues. Throughout the contraction mapping, some values of the simulated shares
𝑠𝑗𝑡(𝛿, 𝜃) can underflow to zero, causing the contraction to fail when taking logs. By default,
shares_bounds in Problem.solve() bounds these simulated shares from below by
1e-300, which eliminates these underflow issues at the cost of making it more difficult for
iteration routines to converge.

With this in mind, scaling epsilon is not supported for nonlinear contractions, and is also
not supported when there are nesting groups, since these further complicate the problem.
In practice, if the goal is to approximate the pure characteristics model, it is a good idea
to slowly decrease the scale of epsilon (e.g., starting with 0.5, trying 0.1, etc.) until the
contraction begins to fail. To further decrease the scale, there are a few things that can
help. One is passing a different Iteration configuration to iteration in Problem.
solve(), such as 'lm', which can be robust in this situation. Another is to set pyblp.
options.dtype = np.longdouble when on a system that supports extended preci-
sion (see options for more information about this) and choose a smaller lower bound by
configuring shares_bounds in Problem.solve(). Ultimately the model will stop
being solvable at a certain point, and this point will vary by problem, so approximating the
pure characteristics model requires some degree of experimentation.

• costs_type (str, optional) – Functional form of the marginal cost function 𝑐 = 𝑓(𝑐) in
(3.9). The following specifications are supported:

– 'linear' (default) - Linear specification: 𝑐 = 𝑐.

– 'log' - Log-linear specification: 𝑐 = log 𝑐.

This specification is only relevant if 𝑋3 is formulated.

• add_exogenous (bool, optional) – Whether to add characteristics in 𝑋1 that do not in-
volve prices, 𝑋ex

1 , to the demand_instruments field in product_data (including
absorbed fixed effects), and similarly, whether to add characteristics in 𝑋3 that do not in-
volve shares, 𝑋ex

3 , to the supply_instruments field. This is by default True so that
only excluded instruments need to be specified.

If this is set to False, demand_instruments and supply_instruments should
specify the full sets of demand- and supply-side instruments, 𝑍𝐷 and 𝑍𝑆 , and fixed effects
should be manually absorbed (for example, with the build_matrix() function). This
behavior can be useful, for example, when price is not the only endogenous product char-
acteristic over which consumers have preferences. This model could be correctly estimated
by manually adding the truly exogenous characteristics in 𝑋1 to 𝑍𝐷.
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Warning: If this flag is set to False because there are multiple endogenous product
characteristics, care should be taken when including a supply side or computing optimal
instruments. These routines assume that price is the only endogenous variable over
which consumers have preferences.

product_formulations
Formulation configurations for 𝑋1, 𝑋2, and 𝑋3, respectively.

Type Formulation or sequence of Formulation

agent_formulation
Formulation configuration for 𝑑.

Type Formulation

products
Product data structured as Products, which consists of data taken from product_data along with
matrices built according to Problem.product_formulations. The data_to_dict() function
can be used to convert this into a more usable data type.

Type Products

agents
Agent data structured as Agents, which consists of data taken from agent_data or built by
integration along with any demographics built according to Problem.agent_formulation.
The data_to_dict() function can be used to convert this into a more usable data type.

Type Agents

unique_market_ids
Unique market IDs in product and agent data.

Type ndarray

unique_firm_ids
Unique firm IDs in product data.

Type ndarray

unique_nesting_ids
Unique nesting group IDs in product data.

Type ndarray

unique_product_ids
Unique product IDs in product data.

Type ndarray

unique_agent_ids
Unique agent IDs in agent data.

Type ndarray

rc_types
Random coefficient types.

Type list of str

epsilon_scale
Factor by which the Type I Extreme Value idiosyncratic preference term, 𝜖𝑖𝑗𝑡, is scaled.

Type float
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costs_type
Functional form of the marginal cost function 𝑐 = 𝑓(𝑐).

Type str

T
Number of markets, 𝑇 .

Type int

N
Number of products across all markets, 𝑁 .

Type int

F
Number of firms across all markets, 𝐹 .

Type int

I
Number of agents across all markets, 𝐼 .

Type int

K1
Number of demand-side linear product characteristics, 𝐾1.

Type int

K2
Number of demand-side nonlinear product characteristics, 𝐾2.

Type int

K3
Number of supply-side product characteristics, 𝐾3.

Type int

D
Number of demographic variables, 𝐷.

Type int

MD
Number of demand-side instruments, 𝑀𝐷, which is typically the number of excluded demand-side instru-
ments plus the number of exogenous demand-side linear product characteristics, 𝐾ex

1 .

Type int

MS
Number of supply-side instruments, 𝑀𝑆 , which is typically the number of excluded supply-side instru-
ments plus the number of exogenous supply-side linear product characteristics, 𝐾ex

3 .

Type int

MC
Number of covariance instruments, 𝑀𝐶 .

Type int

ED
Number of absorbed dimensions of demand-side fixed effects, 𝐸𝐷.

Type int
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ES
Number of absorbed dimensions of supply-side fixed effects, 𝐸𝑆 .

Type int

H
Number of nesting groups, 𝐻 .

Type int

Examples

• Tutorial

Methods

solve([sigma, pi, rho, beta, gamma, . . . ]) Solve the problem.

Once initialized, the following method solves the problem.

Problem.solve([sigma, pi, rho, beta, gamma, . . . ]) Solve the problem.

5.3.2 pyblp.Problem.solve

Problem.solve(sigma=None, pi=None, rho=None, beta=None, gamma=None, sigma_bounds=None,
pi_bounds=None, rho_bounds=None, beta_bounds=None, gamma_bounds=None,
delta=None, method=’2s’, initial_update=None, optimization=None,
scale_objective=True, check_optimality=’both’, finite_differences=False, er-
ror_behavior=’revert’, error_punishment=1, delta_behavior=’first’, iteration=None,
fp_type=’safe_linear’, shares_bounds=(1e-300, None), costs_bounds=None,
W=None, center_moments=True, W_type=’robust’, se_type=’robust’, covari-
ance_moments_mean=0, micro_moments=(), micro_sample_covariances=None, re-
sample_agent_data=None)

Solve the problem.

The problem is solved in one or more GMM steps. During each step, any parameters in 𝜃 are optimized to
minimize the GMM objective value, giving the estimated 𝜃. If there are no parameters in 𝜃 (for example, in the
logit model there are no nonlinear parameters and all linear parameters can be concentrated out), the objective
is evaluated once during the step.

If there are nonlinear parameters, the mean utility, 𝛿(𝜃) is computed market-by-market with fixed point iteration.
Otherwise, it is computed analytically according to the solution of the logit model. If a supply side is to be
estimated, marginal costs, 𝑐(𝜃), are also computed market-by-market. Linear parameters are then estimated,
which are used to recover structural error terms, which in turn are used to form the objective value. By default,
the objective gradient is computed as well.

Note: This method supports parallel() processing. If multiprocessing is used, market-by-market compu-
tation of 𝛿(𝜃) (and 𝑐(𝜃) if a supply side is estimated), along with associated Jacobians, will be distributed among
the processes.

Parameters
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• sigma (array-like, optional) – Configuration for which elements in the lower-triangular
Cholesky root of the covariance matrix for unobserved taste heterogeneity, Σ, are fixed at
zero and starting values for the other elements, which, if not fixed by sigma_bounds, are
in the vector of unknown elements, 𝜃.

Rows and columns correspond to columns in 𝑋2, which is formulated according
product_formulations in Problem. If 𝑋2 was not formulated, this should not be
specified, since the logit model will be estimated.

Values above the diagonal are ignored. Zeros are assumed to be zero throughout estimation
and nonzeros are, if not fixed by sigma_bounds, starting values for unknown elements in
𝜃. If any columns are fixed at zero, only the first few columns of integration nodes (specified
in Problem) will be used.

To have nonzero covariances for only a subset of the random coefficients, the characteristics
for those random coefficients with zero covariances should come first in 𝑋2. This can
be seen by looking at the expression for ΣΣ′, the actual covariance matrix of the random
coefficients.

• pi (array-like, optional) – Configuration for which elements in the matrix of parameters that
measures how agent tastes vary with demographics, Π, are fixed at zero and starting values
for the other elements, which, if not fixed by pi_bounds, are in the vector of unknown
elements, 𝜃.

Rows correspond to the same product characteristics as in sigma. Columns correspond to
columns in 𝑑, which is formulated according to agent_formulation in Problem. If
𝑑 was not formulated, this should not be specified.

Zeros are assumed to be zero throughout estimation and nonzeros are, if not fixed by
pi_bounds, starting values for unknown elements in 𝜃.

• rho (array-like, optional) – Configuration for which elements in the vector of parameters
that measure within nesting group correlation, 𝜌, are fixed at zero and starting values for
the other elements, which, if not fixed by rho_bounds, are in the vector of unknown
elements, 𝜃.

If this is a scalar, it corresponds to all groups defined by the nesting_ids field of
product_data in Problem. If this is a vector, it must have 𝐻 elements, one for
each nesting group. Elements correspond to group IDs in the sorted order of Problem.
unique_nesting_ids. If nesting IDs were not specified, this should not be specified
either.

Zeros are assumed to be zero throughout estimation and nonzeros are, if not fixed by
rho_bounds, starting values for unknown elements in 𝜃.

• beta (array-like, optional) – Configuration for which elements in the vector of demand-
side linear parameters, 𝛽, are concentrated out of the problem. Usually, this is left unspeci-
fied, unless there is a supply side, in which case parameters on endogenous product charac-
teristics cannot be concentrated out of the problem. Values specify which elements are fixed
at zero and starting values for the other elements, which, if not fixed by beta_bounds,
are in the vector of unknown elements, 𝜃.

Elements correspond to columns in 𝑋1, which is formulated according to
product_formulations in Problem.

Both None and numpy.nan indicate that the parameter should be concentrated out of
the problem. That is, it will be estimated, but does not have to be included in 𝜃. Zeros are
assumed to be zero throughout estimation and nonzeros are, if not fixed by beta_bounds,
starting values for unknown elements in 𝜃.
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• gamma (array-like, optional) – Configuration for which elements in the vector of supply-
side linear parameters, 𝛾, are concentrated out of the problem. Usually, this is left un-
specified. Values specify which elements are fixed at zero and starting values for the other
elements, which, if not fixed by gamma_bounds, are in the vector of unknown elements,
𝜃.

Elements correspond to columns in 𝑋3, which is formulated according to
product_formulations in Problem. If 𝑋3 was not formulated, this should
not be specified.

Both None and numpy.nan indicate that the parameter should be concentrated out of the
problem. That is, it will be estimated, but does not have to be included in 𝜃. Zeros are as-
sumed to be zero throughout estimation and nonzeros are, if not fixed by gamma_bounds,
starting values for unknown elements in 𝜃.

• sigma_bounds (tuple, optional) – Configuration for Σ bounds of the form (lb, ub),
in which both lb and ub are of the same size as sigma. Each element in lb and ub
determines the lower and upper bound for its counterpart in sigma. If optimization
does not support bounds, these will be ignored. If bounds are supported, the diagonal of
sigma is by default bounded from below by zero.

Values above the diagonal are ignored. Lower and upper bounds corresponding to zeros
in sigma are set to zero. Setting a lower bound equal to an upper bound fixes the cor-
responding element, removing it from 𝜃. Both None and numpy.nan are converted to
-numpy.inf in lb and to numpy.inf in ub.

• pi_bounds (tuple, optional) – Configuration for Π bounds of the form (lb, ub), in
which both lb and ub are of the same size as pi. Each element in lb and ub determines
the lower and upper bound for its counterpart in pi. If optimization does not support
bounds, these will be ignored. By default, pi is unbounded.

Lower and upper bounds corresponding to zeros in pi are set to zero. Setting a lower bound
equal to an upper bound fixes the corresponding element, removing it from 𝜃. Both None
and numpy.nan are converted to -numpy.inf in lb and to numpy.inf in ub.

• rho_bounds (tuple, optional) – Configuration for 𝜌 bounds of the form (lb, ub), in
which both lb and ub are of the same size as rho. Each element in lb and ub determines
the lower and upper bound for its counterpart in rho. If optimization does not support
bounds, these will be ignored.

If bounds are supported, rho is by default bounded from below by 0, which corresponds to
the simple logit model, and bounded from above by 0.99 because values greater than 1 are
inconsistent with utility maximization.

Lower and upper bounds corresponding to zeros in rho are set to zero. Setting a lower
bound equal to an upper bound fixes the corresponding element, removing it from 𝜃. Both
None and numpy.nan are converted to -numpy.inf in lb and to numpy.inf in ub.

• beta_bounds (tuple, optional) – Configuration for 𝛽 bounds of the form (lb, ub),
in which both lb and ub are of the same size as beta. Each element in lb and ub
determines the lower and upper bound for its counterpart in beta. If optimization
does not support bounds, these will be ignored.

Usually, this is left unspecified unless there is a supply side, in which case parameters on
endogenous product characteristics cannot be concentrated out of the problem. It is gener-
ally a good idea to constrain such parameters to be nonzero so that the intra-firm Jacobian
of shares with respect to prices does not become singular.

By default, all non-concentrated out parameters are unbounded. Bounds should only be
specified for parameters that are included in 𝜃; that is, those with initial values specified in
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beta.

Lower and upper bounds corresponding to zeros in beta are set to zero. Setting a lower
bound equal to an upper bound fixes the corresponding element, removing it from 𝜃. Both
None and numpy.nan are converted to -numpy.inf in lb and to numpy.inf in ub.

• gamma_bounds (tuple, optional) – Configuration for 𝛾 bounds of the form (lb, ub),
in which both lb and ub are of the same size as gamma. Each element in lb and ub
determines the lower and upper bound for its counterpart in gamma. If optimization
does not support bounds, these will be ignored.

By default, all non-concentrated out parameters are unbounded. Bounds should only be
specified for parameters that are included in 𝜃; that is, those with initial values specified in
gamma.

Lower and upper bounds corresponding to zeros in gamma are set to zero. Setting a lower
bound equal to an upper bound fixes the corresponding element, removing it from 𝜃. Both
None and numpy.nan are converted to -numpy.inf in lb and to numpy.inf in ub.

• delta (array-like, optional) – Initial values for the mean utility, 𝛿. If there are any non-
linear parameters, these are the values at which the fixed point iteration routine will start
during the first objective evaluation. By default, the solution to the logit model in (3.46) is
used. If 𝜌 is specified, the solution to the nested logit model in (3.47) under the initial rho
is used instead.

• method (str, optional) – The estimation routine that will be used. The following methods
are supported:

– '1s' - One-step GMM.

– '2s' (default) - Two-step GMM.

Iterated GMM can be manually implemented by executing single GMM steps in a loop, in
which after the first iteration, nonlinear parameters and weighting matrices from the last
ProblemResults are passed as arguments.

• initial_update (bool, optional) – Whether to update starting values for the mean util-
ity 𝛿 and the weighting matrix 𝑊 at the initial parameter values before the first GMM step.
This initial update will be called a zeroth step.

By default, an initial update will not be used unless micro_moments are specified without
an initial weighting matrix W.

Note: When trying multiple parameter starting values to verify that the optimization routine
converges to the same optimum, using initial_update is not recommended because
different weighting matrices will be used for these different runs. A better option is to use
optimization=Optimization('return') at the best guess for parameter values
and pass ProblemResults.updated_W to W for each set of different parameter start-
ing values.

• optimization (Optimization, optional) – Optimization configuration for how
to solve the optimization problem in each GMM step, which is only used if
there are unfixed nonlinear parameters over which to optimize. By default,
Optimization('l-bfgs-b', {'ftol': 0, 'gtol': 1e-8}) is used. If
available, Optimization('knitro') may be preferable. Generally, it is recom-
mended to consider a number of different optimization routines and starting values, veri-
fying that 𝜃 satisfies both the first and second order conditions. Choosing a routine that
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supports bounds (and configuring bounds) is typically a good idea. Choosing a routine that
does not use analytic gradients will often down estimation.

• scale_objective (bool, optional) – Whether to scale the objective in (3.10) by 𝑁 , the
number of observations, in which case the objective after two GMM steps is equal to the 𝐽
statistic from Hansen (1982). By default, the objective is scaled by 𝑁 .

In theory the scale of the objective should not matter, but in practice having similar objective
values for different problem sizes is helpful because similar optimization tolerances can be
used.

• check_optimality (str, optional) – How to check for optimality (first and second or-
der conditions) after the optimization routine finishes. The following configurations are
supported:

– 'gradient' - Analytically compute the gradient after optimization finishes, but do not
compute the Hessian. Since Jacobians needed to compute standard errors will already be
computed, gradient computation will not take a long time. This option may be useful if
Hessian computation takes a long time when, for example, there are a large number of
parameters.

– 'both' (default) - Also compute the Hessian with central finite differences after opti-
mization finishes.

• finite_differences (bool, optional) – Whether to use finite differences to compute
Jacobians and the gradient instead of analytic expressions. Since finite differences comes
with numerical approximation error and is typically slower, analytic expressions are used
by default.

One situation in which finite differences may be preferable is when there are a sufficiently
large number of products and integration nodes in individual markets to make computing
analytic Jacobians infeasible because of memory requirements. Note that an analytic ex-
pression for the Hessian has not been implemented, so when computed it is always approx-
imated with finite differences.

• error_behavior (str, optional) – How to handle any errors. For example, there can
sometimes be overflow or underflow when computing 𝛿(𝜃) at a large 𝜃. The following
behaviors are supported:

– 'revert' (default) - Revert problematic values to their last computed values. If there
are problematic values during the first objective evaluation, revert values in 𝛿(𝜃) to their
starting values; in 𝑐(𝜃), to prices; in the objective, to 1e10; and in other matrices such as
Jacobians, to zeros.

– 'punish' - Set the objective to 1 and its gradient to all zeros. This option along with
a large error_punishment can be helpful for routines that do not use analytic gradi-
ents.

– 'raise' - Raise an exception.

• error_punishment (float, optional) – How to scale the GMM objective value after an
error. By default, the objective value is not scaled.

• delta_behavior (str, optional) – Configuration for the values at which the fixed point
computation of 𝛿(𝜃) in each market will start. This configuration is only relevant if there
are unfixed nonlinear parameters over which to optimize. The following behaviors are sup-
ported:

– 'first' (default) - Start at the values configured by delta during the first GMM step,
and at the values computed by the last GMM step for each subsequent step.
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– 'logit' - Start at the solution to the logit model in (3.46), or if 𝜌 is specified, the
solution to the nested logit model in (3.47). If the initial delta is left unspecified and
there is no nesting parameter being optimized over, this will generally be equivalent to
'first'.

– 'last' - Start at the values of 𝛿(𝜃) computed during the last objective evaluation, or,
if this is the first evaluation, at the values configured by delta. This behavior tends to
speed up computation but may introduce some instability into estimation.

• iteration (Iteration, optional) – Iteration configuration for how to solve the fixed
point problem used to compute 𝛿(𝜃) in each market. This configuration is only relevant
if there are nonlinear parameters, since 𝛿 can be estimated analytically in the logit model.
By default, Iteration('squarem', {'atol': 1e-14}) is used. Newton-based
routines such as Iteration('lm'`) that compute the Jacobian can often be faster (es-
pecially when there are nesting parameters), but the Jacobian-free SQUAREM routine is
used by default because it speed is often comparable and in practice it can be slightly more
stable.

• fp_type (str, optional) – Configuration for the type of contraction mapping used to com-
pute 𝛿(𝜃). The following types are supported:

– 'safe_linear' (default) - The standard linear contraction mapping in (3.13) (or
(3.45) when there is nesting) with safeguards against numerical overflow. Specifically,
max𝑗 𝑉𝑖𝑗𝑡 (or max𝑗 𝑉𝑖𝑗𝑡/(1 − 𝜌ℎ(𝑗)) when there is nesting) is subtracted from 𝑉𝑖𝑗𝑡 and
the logit expression for choice probabilities in (3.5) (or (3.43)) is re-scaled accordingly.
Such re-scaling is known as the log-sum-exp trick.

– 'linear' - The standard linear contraction mapping without safeguards against nu-
merical overflow. This option may be preferable to 'safe_linear' if utilities are
reasonably small and unlikely to create overflow problems.

– 'nonlinear' - Iteration over exp 𝛿𝑗𝑡 instead of 𝛿𝑗𝑡. This can be faster than 'linear'
because it involves fewer logarithms. Also, following Brunner, Heiss, Romahn, and
Weiser (2017), the exp 𝛿𝑗𝑡 term can be cancelled out of the expression because it also
appears in the numerator of (3.5) in the definition of 𝑠𝑗𝑡(𝛿, 𝜃). This second trick only
works when there are no nesting parameters.

– 'safe_nonlinear' - Exponentiated version with minimal safeguards against numer-
ical overflow. Specifically, max𝑗 𝜇𝑖𝑗𝑡 is subtracted from 𝜇𝑖𝑗𝑡. This helps with stability
but is less helpful than subtracting from the full 𝑉𝑖𝑗𝑡, so this version is less stable than
'safe_linear'.

This option is only relevant if sigma or pi are specified because 𝛿 can be estimated ana-
lytically in the logit model with (3.46) and in the nested logit model with (3.47).

• shares_bounds (tuple, optional) – Configuration for 𝑠𝑗𝑡(𝛿, 𝜃) bounds in the contraction
in (3.13) of the form (lb, ub), in which both lb and ub are floats or None. By default,
simulated shares are bounded from below by 1e-300. This is only relevant if fp_type is
'safe_linear' or 'linear'. Bounding shares in the contraction does nothing with a
nonlinear fixed point.

It can be particularly helpful to bound shares in the contraction from below by a small
number to prevent the contraction from failing when there are issues with zero or negative
simulated shares. Zero shares can occur when there are underflow issues and negative shares
can occur when there are issues with the numerical integration routine having negative inte-
gration weights (e.g., for sparse grid integration).

The idea is that a small lower bound will allow the contraction to converge even when it
encounters some issues with small or negative shares. However, if these issues are unlikely,
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disabling this behavior can speed up the iteration routine because fewer checks will be done.

Both None and numpy.nan are converted to -numpy.inf in lb and to numpy.inf in
ub.

• costs_bounds (tuple, optional) – Configuration for 𝑐𝑗𝑡(𝜃) bounds of the form (lb,
ub), in which both lb and ub are floats or None. This is only relevant if 𝑋3 was for-
mulated by product_formulations in Problem. By default, marginal costs are un-
bounded.

When costs_type in Problem is 'log', nonpositive 𝑐(𝜃) values can create problems
when computing 𝑐(𝜃) = log 𝑐(𝜃). One solution is to set lb to a small number. Rows in
Jacobians associated with clipped marginal costs will be zero.

Both None and numpy.nan are converted to -numpy.inf in lb and to numpy.inf in
ub.

• W (array-like, optional) – Starting values for the weighting matrix, 𝑊 . By default, the 2SLS
weighting matrix in (3.23) is used, unless there are any micro_moments, in which case
an initial_update will be used to update starting values 𝑊 and the mean utility 𝛿 at
the initial parameter values before the first GMM step.

• center_moments (bool, optional) – Whether to center each column of the demand- and
supply-side moments 𝑔 before updating the weighting matrix 𝑊 according to (3.24). By
default, the moments are centered. This has no effect if W_type is 'unadjusted'.

• W_type (str, optional) – How to update the weighting matrix. This has no effect if method
is '1s'. Usually, se_type should be the same. The following types are supported:

– 'robust' (default) - Heteroscedasticity robust weighting matrix defined in (3.24) and
(3.25).

– 'clustered' - Clustered weighting matrix defined in (3.24) and (3.26). Clusters must
be defined by the clustering_ids field of product_data in Problem.

– 'unadjusted' - Homoskedastic weighting matrix defined in (3.24) and (3.28).

This only affects the standard demand- and supply-side block of the updated weighting
matrix. If there are micro moments, this matrix will be block-diagonal with a micro moment
block equal to the inverse of the scaled covariance matrix defined in (3.37).

• se_type (str, optional) – How to compute parameter covariances and standard errors.
Usually, W_type should be the same. The following types are supported:

– 'robust' (default) - Heteroscedasticity robust covariances defined in (3.30) and (3.25).

– 'clustered' - Clustered covariances defined in (3.30) and (3.26). Clusters must be
defined by the clustering_ids field of product_data in Problem.

– 'unadjusted' - Homoskedastic covariances defined in (3.31), which are computed
under the assumption that the weighting matrix is optimal.

This only affects the standard demand- and supply-side block of the matrix of averaged
moment covariances. If there are micro moments, the 𝑆 matrix defined in the expressions
referenced above will be block-diagonal with a micro moment block equal to the scaled
covariance matrix defined in (3.37).

• covariance_moments_mean (float, optional) – If covariance_instruments
were specified in product_data, this can be used to choose a 𝑚 ̸= 0 in covariance
moments 𝐸[𝑔𝐶,𝑗𝑡] = 𝐸[(𝜉𝑗𝑡𝜔𝑗𝑡 −𝑚)𝑍𝐶,𝑗𝑡] = 0 where 𝑚 is by default zero. This can be
used for sensitivity testing to see how different covariances may affect estimates.
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• micro_moments (sequence of MicroMoment, optional) – Configurations for the 𝑀𝑀

MicroMoment instances that will be added to the standard set of moments. By default, no
micro moments are used, so 𝑀𝑀 = 0.

When micro moments are specified, unless an initial weighting matrix W is specified as
well (with a lower right micro moment block that reflects micro moment covariances), an
initial_update will be used to update starting values 𝑊 and the mean utility 𝛿 at the
initial parameter values before the first GMM step.

Note: When trying multiple parameter starting values to verify that the optimization routine
converges to the same optimum, using initial_update is not recommended because
different weighting matrices will be used for these different runs. A better option is to use
optimization=Optimization('return') at the best guess for parameter values
and pass ProblemResults.updated_W to W for each set of different parameter start-
ing values.

• micro_sample_covariances (array-like, optional) – Sample covariance matrix for
the 𝑀𝑀 micro moments. By default, their asymptotic covariance matrix is computed ac-
cording to (3.37). This override could be used, for example, if instead of estimating co-
variances at some estimated 𝜃, one wanted to use a boostrap procedure to compute their
covariances directly from the micro data.

• resample_agent_data (callable, optional) – If specified, simulation error in moment
covariances will be accounted for by resampling 𝑟 = 1, . . . , 𝑅 sets of agents by iteratively
calling this function, which should be of the following form:

resample_agent_data(index) --> agent_data or None

where index increments from 0 to 1 and so on and agent_data is the corresponding
resampled agent data, which should be a resampled version of the agent_data passed
to Problem. Each index should correspond to a different set of randomly drawn agent
data, with different integration nodes and demographics. If index is larger than 𝑅−1, this
function should return None, at which point agents will stop being resampled.

Returns ProblemResults of the solved problem.

Return type ProblemResults

Examples

• Tutorial

5.4 Micro Moment Classes

Micro dataset configurations are passed to micro part configurations, which are passed to micro moment configura-
tions, which in turn can be passed to Problem.solve().

MicroDataset(name, observations, com-
pute_weights)

Configuration for a micro dataset 𝑑 on which micro mo-
ments are computed.

MicroPart(name, dataset, compute_values) Configuration for a micro moment part 𝑝.
MicroMoment(name, value, parts[, . . . ]) Configuration for a micro moment 𝑚.
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5.4.1 pyblp.MicroDataset

class pyblp.MicroDataset(name, observations, compute_weights, elimi-
nated_product_ids_index=None, market_ids=None)

Configuration for a micro dataset 𝑑 on which micro moments are computed.

A micro dataset 𝑑, often a survey, is defined by survey weights 𝑤𝑑𝑖𝑗𝑡, which are used in (3.34). For example,
𝑤𝑑𝑖𝑗𝑡 = 1{𝑗 ̸= 0, 𝑡 ∈ 𝑇𝑑} defines a micro dataset that is a selected sample of inside purchasers in a few markets
𝑇𝑑 ⊂ 𝑇 , giving each market an equal sampling weight. Different micro datasets are independent.

See Conlon and Gortmaker (2023) for a more in-depth discussion of the standardized framework used by PyBLP
for incorporating micro data into BLP-style estimation.

Parameters

• name (str) – The unique name of the dataset, which will be used for outputting information
about micro moments.

• observations (int) – The number of observations 𝑁𝑑 in the micro dataset.

• compute_weights (callable) – Function for computing survey weights 𝑤𝑑𝑖𝑗𝑡 in a market
of the following form:

compute_weights(t, products, agents) --> weights

where t is the market in which to compute weights, products is the market’s Products
(with 𝐽𝑡 rows), and agents is the market’s Agents (with 𝐼𝑡 rows), unless pyblp.
options.micro_computation_chunks is larger than its default of 1, in which case
agents is a chunk of the market’s Agents. Denoting the number of rows in agents by
𝐼 , the returned weights should be an array of one of the following shapes:

– 𝐼 × 𝐽𝑡: Conditions on inside purchases by assuming 𝑤𝑑𝑖0𝑡 = 0. Rows correspond to
agents 𝑖 ∈ 𝐼 in the same order as agent_data in Problem or Simulation and
columns correspond to inside products 𝑗 ∈ 𝐽𝑡 in the same order as product_data in
Problem or Simulation.

– 𝐼× (1+𝐽𝑡): The first column indexes the outside option, which can have nonzero survey
weights 𝑤𝑑𝑖0𝑡.

Warning: If using different lambda functions to define different compute_weights
functions in a loop, any variables that are changing within the loop should be passed as
extra arguments to the function to preserve their scope. For example, lambda t, p,
a: weights[t] where weights is some dictionary that is changing in the outer
loop should instead be lambda t, p, a, weights=weights: weights[t];
otherwise, the weights in the current loop’s iteration will be lost.

Warning: If using product-specific demographics, agents.demographics will
be a 𝐼𝑡 × 𝐷 × 𝐽𝑡 array, instead of a 𝐼𝑡 × 𝐷 array like usual. Non-product specific
demographics will be repeated 𝐽𝑡 times.

Note: Particularly when using product-specific demographics or second choices, it may be
convenient to use numpy.einsum, which handles many multiplying multi-dimensional
arrays with common dimensions in an elegant way.
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If the micro dataset contains second choice data, weights can have a third axis corre-
sponding to second choices 𝑘 in 𝑤𝑑𝑖𝑗𝑘𝑡:

– 𝐼 × 𝐽𝑡 × 𝐽𝑡: Conditions on inside purchases by assuming 𝑤𝑑𝑖0𝑘𝑡 = 𝑤𝑑𝑖𝑗0𝑡 = 0.

– 𝐼 × (1 + 𝐽𝑡) × 𝐽𝑡: The first column indexes the outside option, but the second choice is
assumed to be an inside option, 𝑤𝑑𝑖𝑗0𝑡 = 0.

– 𝐼 × 𝐽𝑡× (1+ 𝐽𝑡): The first index in the third axis indexes the outside option, but the first
choice is assumed to be an inside option, 𝑤𝑑𝑖0𝑘 = 0.

– 𝐼 × (1 + 𝐽𝑡) × (1 + 𝐽𝑡): The first column and the first index in the third axis index the
outside option as the first and second choice.

Warning: Second choice moments can use a lot of memory, especially when
𝐽𝑡 is large. If this becomes an issue, consider setting pyblp.options.
micro_computation_chunks to a value higher than its default of 1, such as the
highest 𝐽𝑡. This will cut down on memory usage without much affecting speed.

• eliminated_product_ids_index (int, optional) – This option determines whether
the dataset’s second choices are after only the first choice product 𝑗 is eliminated from the
choice set, in which case this should be None, the default, or if a group of products including
the first choice product is eliminated, in which case this should be a number between 0
and the number of columns in the product_ids field of product_data minus one,
inclusive. The column of product_ids determines the groups.

• market_ids (array-like, optional) – Distinct market IDs with nonzero survey weights
𝑤𝑑𝑖𝑗𝑡. For other markets, 𝑤𝑑𝑖𝑗𝑡 = 0, and compute_weights will not be called.

Examples

• Tutorial

Methods

5.4.2 pyblp.MicroPart

class pyblp.MicroPart(name, dataset, compute_values)
Configuration for a micro moment part 𝑝.

Each micro moment part 𝑝 is defined by its dataset 𝑑𝑝 and micro values 𝑣𝑝𝑖𝑗𝑡, which are used in (3.35) and
(3.36). For example, a micro moment part 𝑝 with 𝑣𝑝𝑖𝑗𝑡 = 𝑦𝑖𝑡𝑥𝑗𝑡 yields the mean 𝑣𝑝 or expectation 𝑣𝑝 of an
interaction between some demographic 𝑦𝑖𝑡 and product characteristic 𝑥𝑗𝑡.

See Conlon and Gortmaker (2023) for a more in-depth discussion of the standardized framework used by PyBLP
for incorporating micro data into BLP-style estimation.

Parameters

• name (str) – The unique name of the micro moment part, which will be used for outputting
information about micro moments.

• dataset (MicroDataset) – The MicroDataset 𝑑𝑝 on which the micro part is computed.
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• compute_values (callable) – Function for computing micro values 𝑣𝑝𝑖𝑗𝑡 (or 𝑣𝑝𝑖𝑗𝑘𝑡 if the
dataset 𝑑𝑝 contains second choice data) in a market of the following form:

compute_values(t, products, agents) --> values

where t is the market in which to compute values, products is the market’s Products
(with 𝐽𝑡 rows), and agents is the market’s Agents (with 𝐼𝑡 rows), unless pyblp.
options.micro_computation_chunks is larger than its default of 1, in which case
agents is a chunk of the market’s Agents. The returned values should be an array of
the same shape as the weights returned by compute_weights of dataset.

Warning: If using different lambda functions to define different compute_values
functions in a loop, any variables that are changing within the loop should be
passed as extra arguments to the function to preserve their scope. For ex-
ample, lambda t, p, a: np.outer(a.demographics[:, d], p.X2[:
, c]) where d and c are indices that are changing in the outer loop should in-
stead be lambda t, p, a, d=d, c=c: np.outer(a.demographics[:,
d], p.X2[:, c]); otherwise, the values of d and c in the current loop’s iteration
will be lost.

Warning: If using product-specific demographics, agents.demographics will
be a 𝐼𝑡 × 𝐷 × 𝐽𝑡 array, instead of a 𝐼𝑡 × 𝐷 array like usual. Non-product specific
demographics will be repeated 𝐽𝑡 times.

Note: Particularly when using product-specific demographics or second choices, it may be
convenient to use numpy.einsum, which handles many multiplying multi-dimensional
arrays with common dimensions in an elegant way.

Examples

• Tutorial

Methods

5.4.3 pyblp.MicroMoment

class pyblp.MicroMoment(name, value, parts, compute_value=None, compute_gradient=None)
Configuration for a micro moment 𝑚.

Each micro moment 𝑚 matches a function 𝑓𝑚(𝑣) of one or more micro moment parts 𝑣 in (3.34). For example,
𝑓𝑚(𝑣) = 𝑣𝑝 with 𝑣𝑝𝑖𝑗𝑡 = 𝑦𝑖𝑡𝑥𝑗𝑡 matches the mean of an interaction between some demographic 𝑦𝑖𝑡 and some
product characteristic 𝑥𝑗𝑡.

Non-simple averages such as conditional means, covariances, correlations, or regression coefficients can be
matched by choosing an appropriate function 𝑓𝑚. For example, 𝑓𝑚(𝑣) = 𝑣1/𝑣2 with 𝑣1𝑖𝑗𝑡 = 𝑦𝑖𝑡𝑥𝑗𝑡1{𝑗 ̸= 0}
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and 𝑣2𝑖𝑗𝑡 = 1{𝑗 ̸= 0} matches the conditional mean of an interaction between 𝑦𝑖𝑡 and 𝑥𝑗𝑡 among those who do
not choose the outside option 𝑗 = 0.

See Conlon and Gortmaker (2023) for a more in-depth discussion of the standardized framework used by PyBLP
for incorporating micro data into BLP-style estimation.

Parameters

• name (str) – The unique name of the micro moment, which will be used for outputting
information about micro moments.

• value (float) – The observed value 𝑓𝑚(𝑣).

• parts (MicroPart or sequence of MicroPart) – The MicroPart configurations on which
𝑓𝑚(·) depends. If this is just a single part 𝑝 and not a sequence, it is assumed that 𝑓𝑚 = 𝑣𝑝
so that the micro moment matches 𝑣𝑝. If this is a sequence, both compute_value and
compute_gradient need to be specified.

• compute_value (callable, optional) – Function for computing the simulated micro value
𝑓𝑚(𝑣) (only if parts is a sequence) of the following form:

compute_value(part_values) --> value

where part_values is the array 𝑣 with as many values as there are parts and the
returned value is the scalar 𝑓𝑚(𝑣).

• compute_gradient (callable, optional) – Function for computing the gradient of the
simulated micro value with respect to its parts (only required if parts is a sequence) of the
following form:

compute_gradient(part_values) --> gradient

where part_values is the array 𝑣 with as many value as there are parts and the re-
turned gradient is 𝜕𝑓𝑚(𝑣)

𝜕𝑣 , an array of the same shape. This is used to compute both
analytic gradients and moment covariances.

Examples

• Tutorial

Methods

5.5 Problem Results Class

Solved problems return the following results class.

ProblemResults Results of a solved BLP problem.
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5.5.1 pyblp.ProblemResults

class pyblp.ProblemResults
Results of a solved BLP problem.

Many results are class attributes. Other post-estimation outputs be computed by calling class methods.

Note: Methods in this class that compute one or more post-estimation output per market support parallel()
processing. If multiprocessing is used, market-by-market computation of each post-estimation output will be
distributed among the processes.

problem
Problem that created these results.

Type Problem

last_results
ProblemResults from the last GMM step.

Type ProblemResults

step
GMM step that created these results.

Type int

optimization_time
Number of seconds it took the optimization routine to finish.

Type float

cumulative_optimization_time
Sum of ProblemResults.optimization_time for this step and all prior steps.

Type float

total_time
Sum of ProblemResults.optimization_time and the number of seconds it took to set up the
GMM step and compute results after optimization had finished.

Type float

cumulative_total_time
Sum of ProblemResults.total_time for this step and all prior steps.

Type float

converged
Whether the optimization routine converged.

Type bool

cumulative_converged
Whether the optimization routine converged for this step and all prior steps.

Type bool

optimization_iterations
Number of major iterations completed by the optimization routine.

Type int
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cumulative_optimization_iterations
Sum of ProblemResults.optimization_iterations for this step and all prior steps.

Type int

objective_evaluations
Number of GMM objective evaluations.

Type int

cumulative_objective_evaluations
Sum of ProblemResults.objective_evaluations for this step and all prior steps.

Type int

fp_converged
Flags for convergence of the iteration routine used to compute 𝛿(𝜃) in each market during each objec-
tive evaluation. Rows are in the same order as Problem.unique_market_ids and column indices
correspond to objective evaluations.

Type ndarray

cumulative_fp_converged
Concatenation of ProblemResults.fp_converged for this step and all prior steps.

Type ndarray

fp_iterations
Number of major iterations completed by the iteration routine used to compute 𝛿(𝜃) in each market during
each objective evaluation. Rows are in the same order as Problem.unique_market_ids and column
indices correspond to objective evaluations.

Type ndarray

cumulative_fp_iterations
Concatenation of ProblemResults.fp_iterations for this step and all prior steps.

Type ndarray

contraction_evaluations
Number of times the contraction used to compute 𝛿(𝜃) was evaluated in each market during each objec-
tive evaluation. Rows are in the same order as Problem.unique_market_ids and column indices
correspond to objective evaluations.

Type ndarray

cumulative_contraction_evaluations
Concatenation of ProblemResults.contraction_evaluations for this step and all prior steps.

Type ndarray

parameters
Stacked parameters in the following order: 𝜃, concentrated out elements of 𝛽, and concentrated out ele-
ments of 𝛾.

Type ndarray

parameter_covariances
Estimated asymptotic covariance matrix for

√
𝑁(𝜃− 𝜃0), in which 𝜃 are the stacked parameters. Standard

errors are the square root of the diagonal of this matrix divided by 𝑁 . Parameter covariances are not
estimated during the first step of two-step GMM.

Type ndarray
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theta
Estimated unfixed parameters, 𝜃, in the following order: Σ̂, Π̂, 𝜌, non-concentrated out elements from 𝛽,
and non-concentrated out elements from 𝛾.

Type ndarray

sigma
Estimated Cholesky root of the covariance matrix for unobserved taste heterogeneity, Σ̂.

Type ndarray

sigma_squared
Estimated covariance matrix for unobserved taste heterogeneity, Σ̂Σ̂′.

Type ndarray

pi
Estimated parameters that measures how agent tastes vary with demographics, Π̂.

Type ndarray

rho
Estimated parameters that measure within nesting group correlations, 𝜌.

Type ndarray

beta
Estimated demand-side linear parameters, 𝛽.

Type ndarray

gamma
Estimated supply-side linear parameters, 𝛾.

Type ndarray

sigma_se
Estimated standard errors for Σ̂, which are not estimated in the first step of two-step GMM.

Type ndarray

sigma_squared_se
Estimated standard errors for Σ̂Σ̂′, which are computed with the delta method, and are not estimated in the
first step of two-step GMM.

Type ndarray

pi_se
Estimated standard errors for Π̂, which are not estimated in the first step of two-step GMM.

Type ndarray

rho_se
Estimated standard errors for 𝜌, which are not estimated in the first step of two-step GMM.

Type ndarray

beta_se
Estimated standard errors for 𝛽, which are not estimated in the first step of two-step GMM.

Type ndarray

gamma_se
Estimated standard errors for 𝛾, which are not estimated in the first step of two-step GMM.

Type ndarray
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sigma_bounds
Bounds for Σ that were used during optimization, which are of the form (lb, ub).

Type tuple

pi_bounds
Bounds for Π that were used during optimization, which are of the form (lb, ub).

Type tuple

rho_bounds
Bounds for 𝜌 that were used during optimization, which are of the form (lb, ub).

Type tuple

beta_bounds
Bounds for 𝛽 that were used during optimization, which are of the form (lb, ub).

Type tuple

gamma_bounds
Bounds for 𝛾 that were used during optimization, which are of the form (lb, ub).

Type tuple

sigma_labels
Variable labels for rows and columns of Σ, which are derived from the formulation for 𝑋2.

Type list of str

pi_labels
Variable labels for columns of Π, which are derived from the formulation for demographics.

Type list of str

rho_labels
Variable labels for 𝜌. If 𝜌 is not a scalar, this is Problem.unique_nesting_ids.

Type list of str

beta_labels
Variable labels for 𝛽, which are derived from the formulation for 𝑋1.

Type list of str

gamma_labels
Variable labels for 𝛾, which are derived from the formulation for 𝑋3.

Type list of str

theta_labels
Variable labels for 𝜃, which are derived from the above labels.

Type list of str

delta
Estimated mean utility, 𝛿(𝜃).

Type ndarray

clipped_shares
Vector of booleans indicating whether the associated simulated shares were clipped during the last fixed
point iteration to compute 𝛿(𝜃). All elements will be False if shares_bounds in Problem.
solve() is disabled (by default shares are bounded from below by a small number to alleviate issues
with underflow and negative shares).
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Type ndarray

tilde_costs
Estimated transformed marginal costs, 𝑐(𝜃) from (3.9). If costs_bounds were specified in Problem.
solve(), 𝑐 may have been clipped.

Type ndarray

clipped_costs
Vector of booleans indicating whether the associated marginal costs were clipped. All elements will be
False if costs_bounds in Problem.solve() was not specified.

Type ndarray

xi
Estimated unobserved demand-side product characteristics, 𝜉(𝜃), or equivalently, the demand-side struc-
tural error term. When there are demand-side fixed effects, this is ∆𝜉(𝜃) in (3.32). That is, fixed effects
are not included.

Type ndarray

omega
Estimated unobserved supply-side product characteristics, 𝜔(𝜃), or equivalently, the supply-side structural
error term. When there are supply-side fixed effects, this is ∆𝜔(𝜃) in (3.32). That is, fixed effects are not
included.

Type ndarray

xi_fe
Estimated demand-side fixed effects 𝜉𝑘1

+ · · · 𝜉𝑘𝐸𝐷
in (3.32), which are only computed when there are

demand-side fixed effects.

Type ndarray

omega_fe
Estimated supply-side fixed effects 𝜔𝑘1 + · · ·𝜔𝑘𝐸𝐷

in (3.32), which are only computed when there are
supply-side fixed effects.

Type ndarray

micro
Micro moments, 𝑔𝑀 , in (3.34).

Type ndarray

micro_values
Estimated micro moment values, 𝑓𝑚(𝑣). Rows are in the same order as ProblemResults.micro.

Type ndarray

micro_covariances
Estimated micro moment covariance matrix 𝑆𝑀 in (3.37) divided by 𝑁 . Equal to
micro_sample_covariances if overridden in Problem.solve().

Type ndarray

moments
Moments, 𝑔, in (3.11).

Type ndarray

moments_jacobian
Jacobian �̄� of moments with respect to 𝜃, in (3.19).

Type ndarray
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simulation_covariances
Adjustment in (3.29) to moment covariances to account for simulation error. This will be all zeros unless
resample_agent_data was specified in Problem.solve().

Type ndarray

objective
GMM objective value, 𝑞(𝜃), defined in (3.10). If scale_objective was True in Problem.
solve() (which is the default), this value was scaled by 𝑁 so that objective values are more compa-
rable across different problem sizes. Note that in some of the BLP literature (and earlier versions of this
package), this expression was previously scaled by 𝑁2.

Type float

xi_by_theta_jacobian
Estimated 𝜕𝜉

𝜕𝜃 = 𝜕𝛿
𝜕𝜃 , which is used to compute the gradient and standard errors.

Type ndarray

omega_by_theta_jacobian
Estimated 𝜕𝜔

𝜕𝜃 = 𝜕𝑐
𝜕𝜃 , which is used to compute the gradient and standard errors.

Type ndarray

micro_by_theta_jacobian
Estimated 𝜕𝑔𝑀

𝜕𝜃 , which is used to compute the gradient and standard errors.

Type ndarray

gradient
Gradient of the GMM objective,∇𝑞(𝜃), defined in (3.18). This is computed after the optimization routine
finishes even if the routine was configured to not use analytic gradients.

Type ndarray

projected_gradient
Projected gradient of the GMM objective. When there are no parameter bounds, this will always be equal
to ProblemResults.gradient. Otherwise, if an element in 𝜃 is equal to its lower (upper) bound,
the corresponding projected gradient value will be truncated at a maximum (minimum) of zero.

Type ndarray

projected_gradient_norm
Infinity norm of ProblemResults.projected_gradient.

Type ndarray

hessian
Estimated Hessian of the GMM objective. By default, this is computed with finite central differences after
the optimization routine finishes.

Type ndarray

reduced_hessian
Reduced Hessian of the GMM objective. When there are no parameter bounds, this will always be equal to
ProblemResults.hessian. Otherwise, if an element in 𝜃 is equal to either its lower or upper bound,
the corresponding row and column in the reduced Hessian will be all zeros.

Type ndarray

reduced_hessian_eigenvalues
Eigenvalues of ProblemResults.reduced_hessian.

Type ndarray
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W
Weighting matrix, 𝑊 , used to compute these results.

Type ndarray

updated_W
Weighting matrix updated according to (3.24).

Type ndarray

Examples

• Tutorial

Methods

bootstrap([draws, seed, iteration, . . . ]) Use a parametric bootstrap to create an empirical dis-
tribution of results.

compute_agent_scores(dataset[, micro_data,
. . . ])

Compute scores for all agent-choices, treated as ob-
servations 𝑛 ∈ 𝑁𝑑 from a micro dataset 𝑑.

compute_aggregate_elasticities([factor,
. . . ])

Estimate aggregate elasticities of demand, E , with
respect to a variable, 𝑥.

compute_approximate_prices([firm_ids,
. . . ])

Approximate equilibrium prices after firm or cost
changes, 𝑝*, under the assumption that shares
and their price derivatives are unaffected by such
changes.

compute_consumer_surpluses([prices, . . . ]) Estimate population-normalized consumer sur-
pluses, CS.

compute_costs([firm_ids, ownership, mar-
ket_id])

Estimate marginal costs, 𝑐.

compute_delta([agent_data, integration, . . . ]) Estimate mean utilities, 𝛿.
compute_demand_hessians([name, mar-
ket_id])

Estimate arrays of second derivatives of demand with
respect to a variable, 𝑥.

compute_demand_jacobians([name, mar-
ket_id])

Estimate matrices of derivatives of demand with re-
spect to a variable, 𝑥.

compute_diversion_ratios([name, mar-
ket_id])

Estimate matrices of diversion ratios, D , with respect
to a variable, 𝑥.

compute_elasticities([name, market_id]) Estimate matrices of elasticities of demand, 𝜀, with
respect to a variable, 𝑥.

compute_hhi([firm_ids, shares, market_id]) Estimate Herfindahl-Hirschman Indices, HHI.
compute_long_run_diversion_ratios([market_id])Estimate matrices of long-run diversion ratios, D̄ .
compute_markups([prices, costs, market_id]) Estimate markups, M .
compute_micro_scores(dataset, micro_data[,
. . . ])

Compute scores for observations 𝑛 ∈ 𝑁𝑑 from a mi-
cro dataset 𝑑.

compute_micro_values(micro_moments) Estimate micro moment values, 𝑓𝑚(𝑣).
compute_optimal_instruments([method,
draws, . . . ])

Estimate feasible optimal or efficient instruments,
𝑍opt
𝐷 and 𝑍opt

𝑆 .
compute_passthrough([firm_ids, ownership,
. . . ])

Estimate matrices of passthrough of marginal costs
to equilibrium prices, Υ.

compute_prices([firm_ids, ownership, costs,
. . . ])

Estimate equilibrium prices after firm or cost
changes, 𝑝*.

compute_probabilities([prices, delta, . . . ]) Estimate matrices of choice probabilities.
Continued on next page
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Table 13 – continued from previous page
compute_profit_hessians([prices, costs,
. . . ])

Estimate arrays of second derivatives of profits with
respect to a prices.

compute_profits([prices, shares, costs, . . . ]) Estimate population-normalized gross expected
profits, 𝜋.

compute_shares([prices, delta, agent_data, . . . ]) Estimate shares.
extract_diagonal_means(matrices[, mar-
ket_id])

Extract means of diagonals from stacked 𝐽𝑡×𝐽𝑡 ma-
trices for each market 𝑡.

extract_diagonals(matrices[, market_id]) Extract diagonals from stacked 𝐽𝑡 × 𝐽𝑡 matrices for
each market 𝑡.

importance_sampling(draws[, ar_constant,
. . . ])

Use importance sampling to construct nodes and
weights for integration.

run_distance_test(unrestricted) Test the validity of model restrictions with the dis-
tance test.

run_hansen_test() Test the validity of overidentifying restrictions with
the Hansen 𝐽 test.

run_lm_test() Test the validity of model restrictions with the La-
grange multiplier test.

run_wald_test(restrictions, . . . ) Test the validity of model restrictions with the Wald
test.

simulate_micro_data(dataset[, seed]) Simulate observations 𝑛 ∈ 𝑁𝑑 from a micro dataset
𝑑.

to_dict([attributes]) Convert these results into a dictionary that maps at-
tribute names to values.

to_pickle(path) Save these results as a pickle file.

The results can be pickled or converted into a dictionary.

ProblemResults.to_pickle(path) Save these results as a pickle file.
ProblemResults.to_dict([attributes]) Convert these results into a dictionary that maps at-

tribute names to values.

5.5.2 pyblp.ProblemResults.to_pickle

ProblemResults.to_pickle(path)
Save these results as a pickle file.

Parameters path (str or Path) – File path to which these results will be saved.
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5.5.3 pyblp.ProblemResults.to_dict

ProblemResults.to_dict(attributes=(’step’, ’optimization_time’, ’cumulative_optimization_time’,
’total_time’, ’cumulative_total_time’, ’converged’, ’cumulative_converged’,
’optimization_iterations’, ’cumulative_optimization_iterations’, ’objec-
tive_evaluations’, ’cumulative_objective_evaluations’, ’fp_converged’,
’cumulative_fp_converged’, ’fp_iterations’, ’cumulative_fp_iterations’,
’contraction_evaluations’, ’cumulative_contraction_evaluations’, ’param-
eters’, ’parameter_covariances’, ’theta’, ’sigma’, ’sigma_squared’, ’pi’,
’rho’, ’beta’, ’gamma’, ’sigma_se’, ’sigma_squared_se’, ’pi_se’, ’rho_se’,
’beta_se’, ’gamma_se’, ’sigma_bounds’, ’pi_bounds’, ’rho_bounds’,
’beta_bounds’, ’gamma_bounds’, ’sigma_labels’, ’pi_labels’, ’rho_labels’,
’beta_labels’, ’gamma_labels’, ’theta_labels’, ’delta’, ’tilde_costs’,
’clipped_shares’, ’clipped_costs’, ’xi’, ’omega’, ’xi_fe’, ’omega_fe’, ’micro’,
’micro_values’, ’micro_covariances’, ’moments’, ’moments_jacobian’,
’simulation_covariances’, ’objective’, ’xi_by_theta_jacobian’,
’omega_by_theta_jacobian’, ’micro_by_theta_jacobian’, ’gradient’, ’pro-
jected_gradient’, ’projected_gradient_norm’, ’hessian’, ’reduced_hessian’,
’reduced_hessian_eigenvalues’, ’W’, ’updated_W’))

Convert these results into a dictionary that maps attribute names to values.

Parameters attributes (sequence of str, optional) – Name of attributes that will be added
to the dictionary. By default, all ProblemResults attributes are added except for
ProblemResults.problem and ProblemResults.last_results.

Returns Mapping from attribute names to values.

Return type dict

Examples

• Tutorial

The following methods test the validity of overidentifying and model restrictions.

ProblemResults.run_hansen_test() Test the validity of overidentifying restrictions with the
Hansen 𝐽 test.

ProblemResults.run_distance_test(unrestricted)Test the validity of model restrictions with the distance
test.

ProblemResults.run_lm_test() Test the validity of model restrictions with the Lagrange
multiplier test.

ProblemResults.run_wald_test(restrictions,
. . . )

Test the validity of model restrictions with the Wald test.

5.5.4 pyblp.ProblemResults.run_hansen_test

ProblemResults.run_hansen_test()
Test the validity of overidentifying restrictions with the Hansen 𝐽 test.

Following Hansen (1982), the 𝐽 statistic is

𝐽 = 𝑁𝑔(𝜃)′𝑊𝑔(𝜃) (5.7)

where 𝑔(𝜃) is defined in (3.11) and 𝑊 is the optimal weighting matrix in (3.24).
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Note: The statistic can equivalently be written as 𝐽 = 𝑁𝑞(𝜃) where the GMM objective value is defined
in (3.10), or the same but without the 𝑁 if the GMM objective value was scaled by 𝑁 , which is the default
behavior.

When the overidentifying restrictions in this model are valid, the 𝐽 statistic is asymptotically 𝜒2 with degrees
of freedom equal to the number of overidentifying restrictions. This requires that there are more moments than
parameters.

Warning: This test requires ProblemResults.W to be an optimal weighting matrix, so it should typi-
cally be run only after two-step GMM or after one-step GMM with a pre-specified optimal weighting matrix.

Returns The 𝐽 statistic.

Return type float

Examples

• Tutorial

5.5.5 pyblp.ProblemResults.run_distance_test

ProblemResults.run_distance_test(unrestricted)
Test the validity of model restrictions with the distance test.

Following Newey and West (1987), the distance or likelihood ratio-like statistic is

LR = 𝐽(𝜃𝑟)− 𝐽(𝜃𝑢) (5.8)

where 𝐽(𝜃𝑟) is the 𝐽 statistic defined in (5.7) for this restricted model and 𝐽(𝜃𝑢) is the 𝐽 statistic for the
unrestricted model.

Note: The statistic can equivalently be written as LR = 𝑁 [𝑞(𝜃𝑟) − 𝑞(𝜃𝑢)] where the GMM objective value
is defined in (3.10), or the same but without the 𝑁 if the GMM objective value was scaled by 𝑁 , which is the
default behavior.

If the restrictions in this model are valid, the distance statistic is asymptotically 𝜒2 with degrees of freedom
equal to the number of restrictions.

Warning: This test requires each model’s ProblemResults.W to be the optimal weighting matrix,
so it should typically be run only after two-step GMM or after one-step GMM with pre-specified optimal
weighting matrices.

Parameters unrestricted (ProblemResults) – ProblemResults for the unrestricted model.

Returns The distance statistic.

Return type float
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Examples

• Tutorial

5.5.6 pyblp.ProblemResults.run_lm_test

ProblemResults.run_lm_test()
Test the validity of model restrictions with the Lagrange multiplier test.

Following Newey and West (1987), the Lagrange multiplier or score statistic is

LM = 𝑁𝑔(𝜃)′𝑊�̄�(𝜃)𝑉 �̄�(𝜃)′𝑊𝑔(𝜃) (5.9)

where 𝑔(𝜃) is defined in (3.11), �̄�(𝜃) is defined in (3.19), 𝑊 is the optimal weighting matrix in (3.24), and 𝑉 is
the covariance matrix of

√
𝑁(𝜃 − 𝜃) in (3.30).

If the restrictions in this model are valid, the Lagrange multiplier statistic is asymptotically 𝜒2 with degrees of
freedom equal to the number of restrictions.

Warning: This test requires ProblemResults.W to be an optimal weighting matrix, so it should typi-
cally be run only after two-step GMM or after one-step GMM with a pre-specified optimal weighting matrix.

Returns The Lagrange multiplier statistic.

Return type float

Examples

• Tutorial

5.5.7 pyblp.ProblemResults.run_wald_test

ProblemResults.run_wald_test(restrictions, restrictions_jacobian)
Test the validity of model restrictions with the Wald test.

Following Newey and West (1987), the Wald statistic is

Wald = 𝑁𝑟(𝜃)′[𝑅(𝜃)𝑉 𝑅(𝜃)′]−1𝑟(𝜃) (5.10)

where the restrictions are 𝑟(𝜃) = 0 under the test’s null hypothesis, their Jacobian is 𝑅(𝜃) = 𝜕𝑟(𝜃)
𝜕𝜃 , and 𝑉 is the

covariance matrix of
√
𝑁(𝜃 − 𝜃) in (3.30).

If the restrictions are valid, the Wald statistic is asymptotically 𝜒2 with degrees of freedom equal to the number
of restrictions.

Parameters

• restrictions (array-like) – Column vector of the model restrictions evaluated at the
estimated parameters, 𝑟(𝜃).

• restrictions_jacobian (array-like) – Estimated Jacobian of the restrictions with
respect to all parameters, 𝑅(𝜃). This matrix should have as many rows as restrictions
and as many columns as ProblemResults.parameter_covariances.

Returns The Wald statistic.
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Return type float

Examples

• Tutorial

In addition to class attributes, other post-estimation outputs can be estimated market-by-market with the following
methods, each of which return an array.

ProblemResults.compute_aggregate_elasticities([. . . ])Estimate aggregate elasticities of demand, E , with re-
spect to a variable, 𝑥.

ProblemResults.compute_elasticities([name,
. . . ])

Estimate matrices of elasticities of demand, 𝜀, with re-
spect to a variable, 𝑥.

ProblemResults.compute_demand_jacobians([. . . ])Estimate matrices of derivatives of demand with respect
to a variable, 𝑥.

ProblemResults.compute_demand_hessians([. . . ])Estimate arrays of second derivatives of demand with
respect to a variable, 𝑥.

ProblemResults.compute_profit_hessians([. . . ])Estimate arrays of second derivatives of profits with re-
spect to a prices.

ProblemResults.compute_diversion_ratios([. . . ])Estimate matrices of diversion ratios, D , with respect to
a variable, 𝑥.

ProblemResults.compute_long_run_diversion_ratios([. . . ])Estimate matrices of long-run diversion ratios, D̄ .
ProblemResults.compute_probabilities([. . . ])Estimate matrices of choice probabilities.
ProblemResults.extract_diagonals(matrices[,
. . . ])

Extract diagonals from stacked 𝐽𝑡×𝐽𝑡 matrices for each
market 𝑡.

ProblemResults.extract_diagonal_means(matrices)Extract means of diagonals from stacked 𝐽𝑡 × 𝐽𝑡 matri-
ces for each market 𝑡.

ProblemResults.compute_delta([agent_data,
. . . ])

Estimate mean utilities, 𝛿.

ProblemResults.compute_costs([firm_ids,
. . . ])

Estimate marginal costs, 𝑐.

ProblemResults.compute_passthrough([. . . ]) Estimate matrices of passthrough of marginal costs to
equilibrium prices, Υ.

ProblemResults.compute_approximate_prices([. . . ])Approximate equilibrium prices after firm or cost
changes, 𝑝*, under the assumption that shares and their
price derivatives are unaffected by such changes.

ProblemResults.compute_prices([firm_ids,
. . . ])

Estimate equilibrium prices after firm or cost changes,
𝑝*.

ProblemResults.compute_shares([prices,
. . . ])

Estimate shares.

ProblemResults.compute_hhi([firm_ids, . . . ]) Estimate Herfindahl-Hirschman Indices, HHI.
ProblemResults.compute_markups([prices,
. . . ])

Estimate markups, M .

ProblemResults.compute_profits([prices,
. . . ])

Estimate population-normalized gross expected profits,
𝜋.

ProblemResults.compute_consumer_surpluses([. . . ])Estimate population-normalized consumer surpluses,
CS.
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5.5.8 pyblp.ProblemResults.compute_aggregate_elasticities

ProblemResults.compute_aggregate_elasticities(factor=0.1, name=’prices’, mar-
ket_id=None)

Estimate aggregate elasticities of demand, E , with respect to a variable, 𝑥.

In market 𝑡, the aggregate elasticity of demand is

E =
∑︁
𝑗∈𝐽𝑡

𝑠𝑗𝑡(𝑥+∆𝑥)− 𝑠𝑗𝑡
∆

, (5.11)

in which ∆ is a scalar factor and 𝑠𝑗𝑡(𝑥+∆𝑥) is the share of product 𝑗 in market 𝑡, evaluated at the scaled values
of the variable.

Parameters

• factor (float, optional) – The scalar factor, ∆.

• name (str, optional) – Name of the variable, 𝑥. By default, 𝑥 = 𝑝, prices. If this is None,
the variable will be 𝑥 = 𝛿, the mean utility.

• market_id (object, optional) – ID of the market in which to compute aggregate elastici-
ties. By default, aggregate elasticities are computed in all markets and stacked.

Returns Estimates of aggregate elasticities of demand, E . If market_id was not specified, rows
are in the same order as Problem.unique_market_ids.

Return type ndarray

Examples

• Tutorial

5.5.9 pyblp.ProblemResults.compute_elasticities

ProblemResults.compute_elasticities(name=’prices’, market_id=None)
Estimate matrices of elasticities of demand, 𝜀, with respect to a variable, 𝑥.

In market 𝑡, the value in row 𝑗 and column 𝑘 of 𝜀 is

𝜀𝑗𝑘 =
𝑥𝑘𝑡

𝑠𝑗𝑡

𝜕𝑠𝑗𝑡
𝜕𝑥𝑘𝑡

. (5.12)

Parameters

• name (str, optional) – Name of the variable, 𝑥. By default, 𝑥 = 𝑝, prices. If this is None,
the variable will be 𝑥 = 𝛿, the mean utility.

• market_id (object, optional) – ID of the market in which to compute elasticities. By
default, elasticities are computed in all markets and stacked.

Returns Estimated 𝐽𝑡 × 𝐽𝑡 matrices of elasticities of demand, 𝜀. If market_id was not specified,
matrices are estimated in each market 𝑡 and stacked. Columns for a market are in the same
order as products for the market. If a market has fewer products than others, extra columns will
contain numpy.nan.

Return type ndarray
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Examples

• Tutorial

5.5.10 pyblp.ProblemResults.compute_demand_jacobians

ProblemResults.compute_demand_jacobians(name=’prices’, market_id=None)
Estimate matrices of derivatives of demand with respect to a variable, 𝑥.

In market 𝑡, the value in row 𝑗 and column 𝑘 is

𝜕𝑠𝑗𝑡
𝜕𝑥𝑘𝑡

. (5.13)

Parameters

• name (str, optional) – Name of the variable, 𝑥. By default, 𝑥 = 𝑝, prices.

• market_id (object, optional) – ID of the market in which to compute Jacobians. By
default, Jacobians are computed in all markets and stacked.

Returns Estimated 𝐽𝑡 × 𝐽𝑡 matrices of derivatives of demand. If market_id was not specified,
matrices are estimated in each market 𝑡 and stacked. Columns for a market are in the same
order as products for the market. If a market has fewer products than others, extra columns will
contain numpy.nan.

Return type ndarray

Examples

• Tutorial

5.5.11 pyblp.ProblemResults.compute_demand_hessians

ProblemResults.compute_demand_hessians(name=’prices’, market_id=None)
Estimate arrays of second derivatives of demand with respect to a variable, 𝑥.

In market 𝑡, the value indexed by (𝑗, 𝑘, ℓ) is

𝜕2𝑠𝑗𝑡
𝜕𝑥𝑘𝑡𝜕𝑥ℓ𝑡

. (5.14)

Parameters

• name (str, optional) – Name of the variable, 𝑥. By default, 𝑥 = 𝑝, prices.

• market_id (object, optional) – ID of the market in which to compute Hessians. By de-
fault, Hessians are computed in all markets and stacked.

Returns Estimated 𝐽𝑡 × 𝐽𝑡 × 𝐽𝑡 arrays of second derivatives of demand. If market_id was not
specified, arrays are estimated in each market 𝑡 and stacked. Indices for a market are in the same
order as products for the market. If a market has fewer products than others, extra indices will
contain numpy.nan.

Return type ndarray
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Examples

• Tutorial

5.5.12 pyblp.ProblemResults.compute_profit_hessians

ProblemResults.compute_profit_hessians(prices=None, costs=None, market_id=None)
Estimate arrays of second derivatives of profits with respect to a prices.

In market 𝑡, the value indexed by (𝑗, 𝑘, ℓ) is

𝜕2𝜋𝑗𝑡

𝜕𝑝𝑘𝑡𝜕𝑝ℓ𝑡
. (5.15)

Profit Hessians can be used to check second order conditions for firms’ pricing prob-
lem. See SimulationResults.profit_hessians and SimulationResults.
profit_hessian_eigenvalues for more information.

Parameters

• prices (array-like, optional) – Prices, 𝑝, such as equilibrium prices, 𝑝*, computed by
ProblemResults.compute_prices(). By default, unchanged prices are used.

• costs (array-like) – Marginal costs, 𝑐. By default, marginal costs are computed with
ProblemResults.compute_costs(). Costs under a changed ownership struc-
ture can be computed by specifying the firm_ids or ownership arguments of
ProblemResults.compute_costs().

• market_id (object, optional) – ID of the market in which to compute Hessians. By de-
fault, Hessians are computed in all markets and stacked.

Returns Estimated 𝐽𝑡 × 𝐽𝑡 × 𝐽𝑡 arrays of second derivatives of profits. If market_id was not
specified, arrays are estimated in each market 𝑡 and stacked. Indices for a market are in the same
order as products for the market. If a market has fewer products than others, extra indices will
contain numpy.nan.

Return type ndarray

Examples

• Tutorial

5.5.13 pyblp.ProblemResults.compute_diversion_ratios

ProblemResults.compute_diversion_ratios(name=’prices’, market_id=None)
Estimate matrices of diversion ratios, D , with respect to a variable, 𝑥.

In market 𝑡, the value in row 𝑗 and column 𝑘 ̸= 𝑗 is

D𝑗𝑘 = −𝜕𝑠𝑘𝑡
𝜕𝑥𝑗𝑡

⧸︁ 𝜕𝑠𝑗𝑡
𝜕𝑥𝑗𝑡

. (5.16)

Diversion ratios for the outside good are reported on diagonals:

D𝑗𝑗 = −
𝜕𝑠0𝑡
𝜕𝑥𝑗𝑡

⧸︁ 𝜕𝑠𝑗𝑡
𝜕𝑥𝑗𝑡

. (5.17)

Unlike ProblemResults.compute_long_run_diversion_ratios(), this gives the marginal
treatment effect (MTE) version of the diversion ratio. For more information, see Conlon and Mortimer (2018).

186 Chapter 5. API Documentation



PyBLP, Release 1.1.0

Parameters

• name (str, optional) – Name of the variable, 𝑥. By default, 𝑥 = 𝑝, prices. If this is None,
the variable will be 𝑥 = 𝛿, the mean utility.

• market_id (object, optional) – ID of the market in which to compute diversion ratios. By
default, diversion ratios are computed in all markets and stacked.

Returns Estimated 𝐽𝑡 × 𝐽𝑡 matrices of diversion ratios, D . If market_id was not specified,
matrices are estimated in each market 𝑡 and stacked. Columns for a market are in the same
order as products for the market. If a market has fewer products than others, extra columns will
contain numpy.nan.

Return type ndarray

Examples

• Tutorial

5.5.14 pyblp.ProblemResults.compute_long_run_diversion_ratios

ProblemResults.compute_long_run_diversion_ratios(market_id=None)
Estimate matrices of long-run diversion ratios, D̄ .

In market 𝑡, the value in row 𝑗 and column 𝑘 ̸= 𝑗 is

D̄𝑗𝑘 =
𝑠𝑘(−𝑗)𝑡 − 𝑠𝑘𝑡

𝑠𝑗𝑡
, (5.18)

in which 𝑠𝑘(−𝑗)𝑡 is the share of product 𝑘 computed with 𝑗 removed from the choice set. Long-run diversion
ratios for the outside good are reported on diagonals:

D̄𝑗𝑗 =
𝑠0(−𝑗)𝑡 − 𝑠0

𝑠𝑗𝑡
. (5.19)

Unlike ProblemResults.compute_diversion_ratios(), this gives the average treatment effect
(ATE) version of the diversion ratio. For more information, see Conlon and Mortimer (2018).

Parameters market_id (object, optional) – ID of the market in which to compute long-run diver-
sion ratios. By default, long-run diversion ratios are computed in all markets and stacked.

Returns Estimated 𝐽𝑡 × 𝐽𝑡 matrices of long-run diversion ratios, D̄ . If market_id was not speci-
fied, matrices are estimated in each market 𝑡 and stacked. Columns for a market are in the same
order as products for the market. If a market has fewer products than others, extra columns will
contain numpy.nan.

Return type ndarray

Examples

• Tutorial
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5.5.15 pyblp.ProblemResults.compute_probabilities

ProblemResults.compute_probabilities(prices=None, delta=None, agent_data=None, integra-
tion=None, market_id=None)

Estimate matrices of choice probabilities.

For each market, the value in row 𝑗 and column i is given by (3.5) when there are random coefficients, and by
(3.43) when there is additionally a nested structure. For the logit and nested logit models, choice probabilities
are market shares.

It may be desirable to compute the probabilities associated with equilibrium prices that have been computed, for
example, by ProblemResults.compute_prices().

Note: To compute equilibrium shares (and prices) associated with a more complicated counterfactual, a
Simulation for the counterfactual can be initialized with the estimated parameters, structural errors, and
marginal costs from these results, and then solved with Simulation.replace_endogenous().

Alternatively, this method can also be used to evaluate the performance of different numerical integration config-
urations. One way to do so is to use ProblemResults.compute_delta() to compute mean utilities with
a very precise integration rule (one that is infeasible to use during estimation), use these same mean utilities and
integration rule to precisely compute probabilities, and then compare error between these precisely-computed
probabilities and probabilities computed with less precise (but feasible to use during estimation) integration
rules, still using the precisely-computed mean utilities.

Parameters

• prices (array-like, optional) – Prices at which to evaluate probabilities, such as equilib-
rium prices, 𝑝*, computed by ProblemResults.compute_prices(). By default,
unchanged prices are used.

• delta (array-like, optional) – Mean utilities that will be used to evaluate probabilities,
such as those computed more precisely by ProblemResults.compute_delta(). By
default, the estimated ProblemResults.delta is used, and updated with any specified
prices.

• agent_data (structured array-like, optional) – Agent data that will be used to compute
probabilities. By default, agent_data in Problem is used. For more information, refer
to Problem.

• integration (Integration, optional) – Integration configuration that will be used
to compute probabilities, which will replace any nodes field in agent_data. This
configuration is required if agent_data is specified without a nodes field. By default,
agent_data in Problem is used. For more information, refer to Problem.

• market_id (object, optional) – ID of the market in which to compute choice probabilities.
By default, choice probabilities are computed in all markets and stacked.

Returns Estimated 𝐽𝑡 × 𝐼𝑡 matrices of choice probabilities. If market_id was not specified,
matrices are estimated in each market 𝑡 and stacked. Columns for a market are in the same order
as agents for the market. If a market has fewer agents than others, extra columns will contain
numpy.nan.

Return type ndarray

Examples

• Tutorial
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5.5.16 pyblp.ProblemResults.extract_diagonals

ProblemResults.extract_diagonals(matrices, market_id=None)
Extract diagonals from stacked 𝐽𝑡 × 𝐽𝑡 matrices for each market 𝑡.

Parameters

• matrices (array-like) – Stacked matrices, such as estimates of 𝜀, com-
puted by ProblemResults.compute_elasticities(); D , computed
by ProblemResults.compute_diversion_ratios(); D̄ , computed by
ProblemResults.compute_long_run_diversion_ratios(); or 𝑠𝑖𝑗𝑡 com-
puted by ProblemResults.compute_probabilities().

• market_id (object, optional) – ID of the market in which to extract diagonals. By default,
diagonals are extracted in all markets and stacked.

Returns Stacked matrix diagonals. If market_id was not specified, diagonals are extracted in
each market 𝑡 and stacked. If the matrices are estimates of 𝜀, a diagonal is a market’s own
elasticities of demand; if they are estimates of D or D̄ , a diagonal is a market’s diversion ratios
to the outside good.

Return type ndarray

Examples

• Tutorial

5.5.17 pyblp.ProblemResults.extract_diagonal_means

ProblemResults.extract_diagonal_means(matrices, market_id=None)
Extract means of diagonals from stacked 𝐽𝑡 × 𝐽𝑡 matrices for each market 𝑡.

Parameters

• matrices (array-like) – Stacked matrices, such as estimates of 𝜀, com-
puted by ProblemResults.compute_elasticities(); D , computed
by ProblemResults.compute_diversion_ratios(); D̄ , computed by
ProblemResults.compute_long_run_diversion_ratios(); or 𝑠𝑖𝑗𝑡 com-
puted by ProblemResults.compute_probabilities().

• market_id (object, optional) – ID of the market in which to extract diagonal means. By
default, diagonal means are extracted in all markets and stacked.

Returns Stacked diagonal means. If market_id was not specified, diagonal means are extracted
in each market 𝑡 and stacked. If the matrices are estimates of 𝜀, the mean of a diagonal is a
market’s mean own elasticity of demand; if they are estimates of D or D̄ , the mean of a diagonal
is a market’s mean diversion ratio to the outside good. Rows are in the same order as Problem.
unique_market_ids.

Return type ndarray

Examples

• Tutorial
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5.5.18 pyblp.ProblemResults.compute_delta

ProblemResults.compute_delta(agent_data=None, integration=None, iteration=None,
fp_type=’safe_linear’, shares_bounds=(1e-300, None), mar-
ket_id=None)

Estimate mean utilities, 𝛿.

This method can be used to compute mean utilities at the estimated parameters with a different integration
configuration or with different fixed point iteration settings than those used during estimation. The estimated
ProblemResults.delta will be used as starting values for the fixed point routine.

A more precisely estimated mean utility can be used, for example, by ProblemResults.
importance_sampling(). It can also be used to ProblemResults.compute_shares() to com-
pare the performance of different integration routines.

Parameters

• agent_data (structured array-like, optional) – Agent data that will be used to compute 𝛿.
By default, agent_data in Problem is used. For more information, refer to Problem.

• integration (Integration, optional) – Integration configuration that will be used
to compute 𝛿, which will replace any nodes field in agent_data. This configuration is
required if agent_data is specified without a nodes field. By default, agent_data in
Problem is used. For more information, refer to Problem.

• iteration (Iteration, optional) – Iteration configuration for how to solve the fixed
point problem used to compute 𝛿 in each market. By default, Iteration('squarem',
{'atol': 1e-14}) is used. For more information, refer to Problem.solve().

• fp_type (str, optional) – Configuration for the type of contraction mapping used to com-
pute 𝛿 in each market. By default, 'safe_linear' is used. For more information, refer
to Problem.solve().

• shares_bounds (tuple, optional) – Configuration for 𝑠𝑗𝑡(𝛿, 𝜃) bounds of the form (lb,
ub), in which both lb and ub are floats or None. By default, simulated shares are
bounded from below by 1e-300. This is only relevant if fp_type is 'safe_linear'
or 'linear'. Bounding shares in the contraction does nothing with a nonlinear fixed
point. For more information, refer to Problem.solve().

• market_id (object, optional) – ID of the market in which to compute mean utilities. By
default, mean utilities is computed in all markets and stacked.

Returns Mean utilities, 𝛿.

Return type ndarray

Examples

• Tutorial

5.5.19 pyblp.ProblemResults.compute_costs

ProblemResults.compute_costs(firm_ids=None, ownership=None, market_id=None)
Estimate marginal costs, 𝑐.

Marginal costs are computed with the 𝜂-markup equation in (3.7):

𝑐 = 𝑝− 𝜂. (5.20)
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Parameters

• firm_ids (array-like, optional) – Firm IDs. By default, the firm_ids field of
product_data in Problem will be used.

• ownership (array-like, optional) – Ownership matrices. By default, standard own-
ership matrices based on firm_ids will be used unless the ownership field of
product_data in Problem was specified.

• market_id (object, optional) – ID of the market in which to compute marginal costs. By
default, marginal costs are computed in all markets and stacked.

Returns Marginal costs, 𝑐.

Return type ndarray

Examples

• Tutorial

5.5.20 pyblp.ProblemResults.compute_passthrough

ProblemResults.compute_passthrough(firm_ids=None, ownership=None, market_id=None)
Estimate matrices of passthrough of marginal costs to equilibrium prices, Υ.

In market 𝑡, the value in row 𝑗 and column 𝑘 of Υ is

Υ𝑗𝑘 =
𝜕𝑝𝑗
𝜕𝑐𝑘

. (5.21)

Parameters

• firm_ids (array-like, optional) – Firm IDs. By default, the firm_ids field of
product_data in Problem will be used.

• ownership (array-like, optional) – Ownership matrices. By default, standard own-
ership matrices based on firm_ids will be used unless the ownership field of
product_data in Problem was specified.

• market_id (object, optional) – ID of the market in which to compute passthrough. By
default, passthrough matrices are computed in all markets and stacked.

Returns Estimated 𝐽𝑡 × 𝐽𝑡 passthrough matrices, Υ. If market_id was not specified, matrices
are estimated in each market 𝑡 and stacked. Columns for a market are in the same order as
products for the market. If a market has fewer products than others, extra columns will contain
numpy.nan.

Return type ndarray

Examples

• Tutorial
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5.5.21 pyblp.ProblemResults.compute_approximate_prices

ProblemResults.compute_approximate_prices(firm_ids=None, ownership=None, costs=None,
market_id=None)

Approximate equilibrium prices after firm or cost changes, 𝑝*, under the assumption that shares and their price
derivatives are unaffected by such changes.

This approximation is in the spirit of Hausman, Leonard, and Zona (1994) and Werden (1997). Prices in each
market are computed according to the 𝜂-markup equation in (3.7):

𝑝* = 𝑐* + 𝜂*, (5.22)

in which the markup term is approximated with

𝜂* ≈ −
(︂

H * ⊙ 𝜕𝑠

𝜕𝑝

)︂−1

𝑠 (5.23)

where H * is the ownership or product holding matrix associated with firm changes.

Parameters

• firm_ids (array-like, optional) – Potentially changed firm IDs. By default, the unchanged
firm_ids field of product_data in Problem will be used.

• ownership (array-like, optional) – Potentially changed ownership matrices. By default,
standard ownership matrices based on firm_ids will be used unless the ownership
field of product_data in Problem was specified.

• costs (array-like, optional) – Potentially changed marginal costs, 𝑐*. By default, un-
changed marginal costs are computed with ProblemResults.compute_costs().
Costs under a changed ownership structure can be computed by specifying the firm_ids
or ownership arguments of ProblemResults.compute_costs().

• market_id (object, optional) – ID of the market in which to compute approximate equi-
librium prices. By default, approximate equilibrium prices are computed in all markets and
stacked.

Returns Approximation of equilibrium prices after any firm or cost changes, 𝑝*.

Return type ndarray

Examples

• Tutorial

5.5.22 pyblp.ProblemResults.compute_prices

ProblemResults.compute_prices(firm_ids=None, ownership=None, costs=None, prices=None, it-
eration=None, constant_costs=True, market_id=None)

Estimate equilibrium prices after firm or cost changes, 𝑝*.

Note: To compute equilibrium prices (and shares) associated with a more complicated counterfactual, a
Simulation for the counterfactual can be initialized with the estimated parameters, structural errors, and
marginal costs from these results, and then solved with Simulation.replace_endogenous(). The re-
turned SimulationResults gives more information about the contraction than this method, such as the
number of contraction evaluations. It also automatically reports first and second order conditions.
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Prices are computed in each market by iterating over the 𝜁-markup contraction in (3.52):

𝑝* ← 𝑐* + 𝜁*(𝑝*), (5.24)

in which the markup term from (3.49) is

𝜁*(𝑝*) = Λ−1(𝑝*)[H * ⊙ Γ(𝑝*)]′(𝑝* − 𝑐*)− Λ−1(𝑝*)𝑠(𝑝*) (5.25)

where H * is the ownership matrix associated with firm changes.

Parameters

• firm_ids (array-like, optional) – Potentially changed firm IDs. By default, the unchanged
firm_ids field of product_data in Problem will be used.

• ownership (array-like, optional) – Potentially changed ownership matrices. By default,
standard ownership matrices based on firm_ids will be used unless the ownership
field of product_data in Problem was specified.

• costs (array-like) – Potentially changed marginal costs, 𝑐*. By default, unchanged
marginal costs are computed with ProblemResults.compute_costs(). Costs un-
der a changed ownership structure can be computed by specifying the firm_ids or
ownership arguments of ProblemResults.compute_costs(). If marginal costs
depend on prices through market shares, they will be updated to reflect different prices dur-
ing each iteration of the routine. Updated marginal costs can be obtained by instead using
Simulation.replace_endogenous().

• prices (array-like, optional) – Prices at which the fixed point iteration routine will
start. By default, unchanged prices, 𝑝, are used as starting values. Other reasonable start-
ing prices include the approximate equilibrium prices computed by ProblemResults.
compute_approximate_prices().

• iteration (Iteration, optional) – Iteration configuration for how to solve the
fixed point problem in each market. By default, Iteration('simple', {'atol':
1e-12}) is used.

• constant_costs (bool, optional) – Whether to assume that marginal costs, 𝑐, re-
main constant as equilibrium prices and shares change. By default this is True, which
means that firms treat marginal costs as constant (equal to costs) when setting prices.
This assumption is implicit in how ProblemResults.compute_costs() computes
marginal costs. If set to False, marginal costs will be allowed to adjust if shares was
included in the formulation for 𝑋3 in Problem.

• market_id (object, optional) – ID of the market in which to compute equilibrium prices.
By default, equilibrium prices are computed in all markets and stacked.

Returns Estimates of equilibrium prices after any firm or cost changes, 𝑝*.

Return type ndarray

Examples

• Tutorial

5.5.23 pyblp.ProblemResults.compute_shares

ProblemResults.compute_shares(prices=None, delta=None, agent_data=None, integration=None,
market_id=None)

Estimate shares.
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It may be desirable to compute the shares associated with equilibrium prices that have been computed, for
example, by ProblemResults.compute_prices().

Note: To compute equilibrium shares (and prices) associated with a more complicated counterfactual, a
Simulation for the counterfactual can be initialized with the estimated parameters, structural errors, and
marginal costs from these results, and then solved with Simulation.replace_endogenous().

Alternatively, this method can also be used to evaluate the performance of different numerical integration con-
figurations. One way to do so is to use ProblemResults.compute_delta() to compute mean utilities
with a very precise integration rule (one that is infeasible to use during estimation), use these same mean utili-
ties and integration rule to precisely compute shares, and then compare error between these precisely-computed
shares and shares computed with less precise (but feasible to use during estimation) integration rules, still using
the precisely-computed mean utilities.

Parameters

• prices (array-like, optional) – Prices at which to evaluate shares, such as equilibrium
prices, 𝑝*, computed by ProblemResults.compute_prices(). By default, un-
changed prices are used.

• delta (array-like, optional) – Mean utilities that will be used to evaluate shares, such
as those computed more precisely by ProblemResults.compute_delta(). By de-
fault, the estimated ProblemResults.delta is used, and updated with any specified
prices.

• agent_data (structured array-like, optional) – Agent data that will be used to compute
shares. By default, agent_data in Problem is used. For more information, refer to
Problem.

• integration (Integration, optional) – Integration configuration that will be used to
compute shares, which will replace any nodes field in agent_data. This configuration
is required if agent_data is specified without a nodes field. By default, agent_data
in Problem is used. For more information, refer to Problem.

• market_id (object, optional) – ID of the market in which to compute shares. By default,
shares are computed in all markets and stacked.

Returns Estimates of shares.

Return type ndarray

Examples

• Tutorial

5.5.24 pyblp.ProblemResults.compute_hhi

ProblemResults.compute_hhi(firm_ids=None, shares=None, market_id=None)
Estimate Herfindahl-Hirschman Indices, HHI.

The index in market 𝑡 is

HHI = 10,000×
∑︁
𝑓∈𝐹𝑡

⎛⎝∑︁
𝑗∈𝐽𝑓𝑡

𝑠𝑗𝑡

⎞⎠2

. (5.26)

Parameters
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• firm_ids (array-like, optional) – Firm IDs. By default, the unchanged firm_ids field
of product_data in Problem will be used.

• shares (array-like, optional) – Shares, 𝑠, such as those computed by
ProblemResults.compute_shares(). By default, unchanged shares are used.

• market_id (object, optional) – ID of the market in which to compute the index. By
default, indices are computed in all markets and stacked.

Returns Estimated Herfindahl-Hirschman Indices, HHI. If market_ids was not specified, rows
are in the same order as Problem.unique_market_ids.

Return type ndarray

Examples

• Tutorial

5.5.25 pyblp.ProblemResults.compute_markups

ProblemResults.compute_markups(prices=None, costs=None, market_id=None)
Estimate markups, M .

The markup of product 𝑗 in market 𝑡 is

M𝑗𝑡 =
𝑝𝑗𝑡 − 𝑐𝑗𝑡

𝑝𝑗𝑡
. (5.27)

Parameters

• prices (array-like, optional) – Prices, 𝑝, such as equilibrium prices, 𝑝*, computed by
ProblemResults.compute_prices(). By default, unchanged prices are used.

• costs (array-like) – Marginal costs, 𝑐. By default, marginal costs are computed with
ProblemResults.compute_costs(). Costs under a changed ownership struc-
ture can be computed by specifying the firm_ids or ownership arguments of
ProblemResults.compute_costs().

• market_id (object, optional) – ID of the market in which to compute markups. By de-
fault, markups are computed in all markets and stacked.

Returns Estimated markups, M .

Return type ndarray

Examples

• Tutorial

5.5.26 pyblp.ProblemResults.compute_profits

ProblemResults.compute_profits(prices=None, shares=None, costs=None, market_id=None)
Estimate population-normalized gross expected profits, 𝜋.

With constant costs, the profit from product 𝑗 in market 𝑡 is

𝜋𝑗𝑡 = (𝑝𝑗𝑡 − 𝑐𝑗𝑡)𝑠𝑗𝑡. (5.28)
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Parameters

• prices (array-like, optional) – Prices, 𝑝, such as equilibrium prices, 𝑝*, computed by
ProblemResults.compute_prices(). By default, unchanged prices are used.

• shares (array-like, optional) – Shares, 𝑠, such as those computed by
ProblemResults.compute_shares(). By default, unchanged shares are used.

• costs (array-like) – Marginal costs, 𝑐. By default, marginal costs are computed with
ProblemResults.compute_costs(). Costs under a changed ownership struc-
ture can be computed by specifying the firm_ids or ownership arguments of
ProblemResults.compute_costs().

• market_id (object, optional) – ID of the market in which to compute profits. By default,
profits are computed in all markets and stacked.

Returns Estimated population-normalized gross expected profits, 𝜋.

Return type ndarray

Examples

• Tutorial

5.5.27 pyblp.ProblemResults.compute_consumer_surpluses

ProblemResults.compute_consumer_surpluses(prices=None, keep_all=False, elimi-
nate_product_ids=None, product_ids_index=0,
market_id=None)

Estimate population-normalized consumer surpluses, CS.

Assuming away nonlinear income effects, the surplus in market 𝑡 is

CS =
∑︁
𝑖∈𝐼𝑡

𝑤𝑖𝑡CS𝑖𝑡, (5.29)

in which the consumer surplus for individual 𝑖 is

CS𝑖𝑡 = log

⎛⎝1 +
∑︁
𝑗∈𝐽𝑡

exp𝑉𝑖𝑗𝑡

⎞⎠⧸︁(︂−𝜕𝑉𝑖1𝑡

𝜕𝑝1𝑡

)︂
, (5.30)

or with nesting parameters,

CS𝑖𝑡 = log

(︃
1 +

∑︁
ℎ∈𝐻

exp𝑉𝑖ℎ𝑡

)︃⧸︁(︂
−𝜕𝑉𝑖1𝑡

𝜕𝑝1𝑡

)︂
(5.31)

where 𝑉𝑖𝑗𝑡 is defined in (3.1) and 𝑉𝑖ℎ𝑡 is defined in (3.44).

Warning: 𝜕𝑉1𝑡𝑖

𝜕𝑝1𝑡
is the derivative of utility for the first product with respect to its price. The first product

is chosen arbitrarily because this method assumes that there are no nonlinear income effects, which implies
that this derivative is the same for all products. Computed consumer surpluses will likely be incorrect if
prices are formulated in a nonlinear fashion like log(prices).

Comparing consumer surpluses with the same values computed after eliminating one or more products from the
agents’ choice sets (i.e. setting exp𝑉𝑖𝑗𝑡 = 0 for eliminated products 𝑗) gives a measure of willingness to pay.
This can be done with the eliminate_product_ids argument.
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Parameters

• prices (array-like, optional) – Prices at which utilities and price derivatives will
be evaluated, such as equilibrium prices, 𝑝*, computed by ProblemResults.
compute_prices(). By default, unchanged prices are used.

• keep_all (bool, optional) – Whether to keep all individuals’ surpluses CS𝑖𝑡 or just
market-level surpluses. By default only market-level surpluses are returned, but returning
all surpluses will be important for analysis by agent type or demographic category.

• eliminate_product_ids (sequence of object, optional) – IDs of the products to elim-
inate from the choice set. These IDs should show up in the product_ids field of
product_data in Problem. Eliminating one or more products and comparing con-
sumer surpluses gives a measure of willingness to pay for these products.

• product_ids_index (int, optional) – Index between 0 and the number of columns
in the product_ids field of product_data minus one, inclusive, which determines
which column of product IDs eliminate_product_ids refers to. By default, it refers
to the first column, which is index 0.

• market_id (object, optional) – ID of the market in which to compute consumer surplus.
By default, consumer surpluses are computed in all markets and stacked.

Returns Estimated population-normalized consumer surpluses, CS (or individuals’ surpluses if
keep_all is True). If market_ids was not specified, rows are in the same order as
Problem.unique_market_ids. If keep_all is True, columns for a market are in the
same order as agents for the market. If a market has fewer agents than others, extra columns will
contain numpy.nan.

Return type ndarray

Examples

• Tutorial

A parametric bootstrap can be used, for example, to compute standard errors forpost-estimation outputs. The following
method returns a results class with the same methods in the list directly above, which returns a distribution of post-
estimation outputs corresponding to different bootstrapped samples.

ProblemResults.bootstrap([draws, seed, . . . ]) Use a parametric bootstrap to create an empirical distri-
bution of results.

5.5.28 pyblp.ProblemResults.bootstrap

ProblemResults.bootstrap(draws=1000, seed=None, iteration=None, constant_costs=True)
Use a parametric bootstrap to create an empirical distribution of results.

The constructed BootstrappedResults can be used just like ProblemResults to compute various
post-estimation outputs for different markets. The only difference is that BootstrappedResults methods
return arrays with an extra first dimension, along which bootstrapped results are stacked. These stacked results
can be used to construct, for example, confidence intervals for post-estimation outputs.

For each bootstrap draw, parameters are drawn from the estimated multivariate normal distribution of all parame-
ters defined by ProblemResults.parameters and ProblemResults.parameter_covariances
(where the second covariance matrix is divided by 𝑁 ). Any bounds configured in Problem.solve() will
also bound parameter draws. Each parameter draw is used to compute the implied mean utility, 𝛿, and shares,
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𝑠. If a supply side was estimated, the implied marginal costs, 𝑐, and prices, 𝑝, are computed as well by iterating
over the 𝜁-markup contraction in (3.52). If marginal costs depend on prices through market shares, they will be
updated to reflect different prices during each iteration of the routine.

Note: By default, parametric bootstrapping may use a lot of memory. This is because all bootstrapped results
(for all draws) are stored in memory at the same time. Memory usage can be reduced by calling this method
in a loop with draws = 1. In each iteration of the loop, compute the desired post-estimation output with the
proper method of the returned BootstrappedResults class and store these outputs.

Parameters

• draws (int, optional) – The number of draws that will be taken from the joint distribution
of the parameters. The default value is 1000.

• seed (int, optional) – Passed to numpy.random.RandomState to seed the random
number generator before any draws are taken. By default, a seed is not passed to the random
number generator.

• iteration (Iteration, optional) – Iteration configuration used to compute boot-
strapped prices by iterating over the 𝜁-markup equation in (3.52). By default, if a supply
side was estimated, this is Iteration('simple', {'atol': 1e-12}). Analytic
Jacobians are not supported for solving this system. This configuration is not used if a
supply side was not estimated.

• constant_costs (bool, optional) – Whether to assume that marginal costs, 𝑐, remain
constant as equilibrium prices and shares change. By default this is True, which means that
firms treat marginal costs as constant when setting prices. If set to False, marginal costs
will be allowed to adjust if shares was included in the formulation for 𝑋3 in Problem.
This is not relevant if a supply side was not estimated.

Returns Computed BootstrappedResults.

Return type BootstrappedResults

Examples

• Tutorial

Optimal instruments, which also return a results class instead of an array, can be estimated with the following method.

ProblemResults.compute_optimal_instruments([. . . ])Estimate feasible optimal or efficient instruments, 𝑍opt
𝐷

and 𝑍opt
𝑆 .

5.5.29 pyblp.ProblemResults.compute_optimal_instruments

ProblemResults.compute_optimal_instruments(method=’approximate’, draws=1, seed=None,
expected_prices=None, iteration=None, con-
stant_costs=True)

Estimate feasible optimal or efficient instruments, 𝑍opt
𝐷 and 𝑍opt

𝑆 .

Optimal instruments have been shown, for example, by Reynaert and Verboven (2014) and Conlon and Gort-
maker (2020), to reduce bias, improve efficiency, and enhance stability of BLP estimates.
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Optimal instruments in the spirit of Amemiya (1977) or Chamberlain (1987) are defined by[︂
𝑍opt
𝐷,𝑗𝑡

𝑍opt
𝑆,𝑗𝑡

]︂
= Σ−1

𝜉𝜔𝐸

[︃
𝜕𝜉𝑗𝑡
𝜕𝜃

𝜕𝜔𝑗𝑡

𝜕𝜃

⃒⃒⃒⃒
⃒ 𝑍
]︃
, (5.32)

in which 𝑍 are all exogenous variables.

Feasible optimal instruments are estimated by evaluating this expression at an estimated 𝜃. The expectation is
taken by approximating an integral over the joint density of 𝜉 and 𝜔. For each error term realization, if not
already estimated, equilibrium prices and shares are computed by iterating over the 𝜁-markup contraction in
(3.52). If marginal costs depend on prices through market shares, they will be updated to reflect different prices
during each iteration of the routine.

The expected Jacobians are estimated with the average over all computed Jacobian realizations. The 2 × 2
normalizing matrix Σ𝜉𝜔 is estimated with the sample covariance matrix of the error terms.

Optimal instruments for linear parameters not included in 𝜃 are simple product characteristics, so they are not
computed here but are rather included in the final set of instruments by OptimalInstrumentResults.
to_problem().

Note: When both a supply and demand side are estimated, there are usually collinear rows in (5.32) because
of overlapping product characteristics in 𝑋1 and 𝑋3. The expression can be corrected by multiplying it with
a conformable matrix of ones and zeros that remove the collinearity problem. The question of which rows to
exclude is addressed in OptimalInstrumentResults.to_problem().

Warning: Currently, only optimal instruments for the standard demand- and supply-side moments are
supported. If covariance_instruments were specified in product_data, the computed optimal
instruments will only be optimal with respect to the demand- and supply-side moments, not with respect to
the addition of any covariance moments as well.

Parameters

• method (str, optional) – The method by which the integral over the joint density of 𝜉 and
𝜔 is approximated. The following methods are supported:

– 'approximate' (default) - Evaluate the Jacobians at the expected value of the error
terms: zero (draws will be ignored).

– 'normal' - Draw from the normal approximation to the joint distribution of the error
terms and take the average over the computed Jacobians (draws determines the number
of draws).

– 'empirical' - Draw with replacement from the empirical joint distribution of the error
terms and take the average over the computed Jacobians (draws determines the number
of draws).

• draws (int, optional) – The number of draws that will be taken from the joint distribution
of the error terms. This is ignored if method is 'approximate'. Because the default
method is 'approximate', the default number of draws is 1, even though it will be
ignored. For 'normal' or empirical, larger numbers such as 100 or 1000 are recom-
mended.

• seed (int, optional) – Passed to numpy.random.RandomState to seed the random
number generator before any draws are taken. By default, a seed is not passed to the random
number generator.
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• expected_prices (array-like, optional) – Vector of expected prices conditional on all
exogenous variables, 𝐸[𝑝 | 𝑍]. By default, if a supply side was estimated and shares did
not enter into the formulation for 𝑋3 in Problem, iteration is used. Otherwise, this
is by default estimated with the fitted values from a reduced form regression of endogenous
prices onto 𝑍𝐷.

• iteration (Iteration, optional) – Iteration configuration used to estimate expected
prices by iterating over the 𝜁-markup contraction in (3.52). By default, if a supply side
was estimated, this is Iteration('simple', {'atol': 1e-12}). Analytic Ja-
cobians are not supported for solving this system. This configuration is not used if
expected_prices is specified.

• constant_costs (bool, optional) – Whether to assume that marginal costs, 𝑐, remain
constant as equilibrium prices and shares change. By default this is True, which means that
firms treat marginal costs as constant when setting prices. If set to False, marginal costs
will be allowed to adjust if shares was included in the formulation for 𝑋3 in Problem.
This is not relevant if a supply side was not estimated.

Returns Computed OptimalInstrumentResults.

Return type OptimalInstrumentResults

Examples

• Tutorial

Importance sampling can be used to create new integration nodes and weights. Its method also returns a results class.

ProblemResults.importance_sampling(draws[,
. . . ])

Use importance sampling to construct nodes and
weights for integration.

5.5.30 pyblp.ProblemResults.importance_sampling

ProblemResults.importance_sampling(draws, ar_constant=1.0, seed=None, agent_data=None,
integration=None, delta=None)

Use importance sampling to construct nodes and weights for integration.

Importance sampling is done with the accept/reject procedure of Berry, Levinsohn, and Pakes (1995). First,
agent_data and/or integration are used to provide a large number of candidate sampling nodes 𝜈 and
any demographics 𝑑.

Out of these candidate agent data, each candidate agent 𝑖 in market 𝑡 is accepted with probability 1−𝑠𝑖0𝑡
𝑀 where

𝑀 ≥ 1 is some accept-reject constant. The probability of choosing an inside good 1 − 𝑠𝑖0𝑡, is evaluated at the
estimated 𝜃 and 𝛿(𝜃).

Optionally, ProblemResults.compute_delta() can be used to provide a more precise 𝛿(𝜃) than the
estimated ProblemResults.delta. The idea is that more precise agent data (i.e., more integration nodes)
would be infeasible to use during estimation, but is feasible here because 𝛿(𝜃) only needs to be computed once
given a 𝜃.

Out of the remaining accepted agents, 𝐼𝑡 equal to draws are randomly selected within each market 𝑡 and
assigned integration weights 𝑤𝑖𝑡 =

1
𝐼𝑡
· 1−𝑠0𝑡
1−𝑠𝑖0𝑡

.

If this procedure accepts fewer than draws agents in a market, an exception will be raised. A good rule of
thumb is to provide more candidate draws in each market than 𝑀×𝐼𝑡

1−𝑠0𝑡
.

Parameters
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• draws (int, optional) – Number of draws to take from sampling_agent_data in each
market.

• ar_constant (float, optional) – Accept/reject constant 𝑀 ≥ 1, which is by default, 1.0.

• seed (int, optional) – Passed to numpy.random.RandomState to seed the random
number generator before importance sampling is done. By default, a seed is not passed to
the random number generator.

• agent_data (structured array-like, optional) – Agent data from which draws will be sam-
pled, which should have the same structure as agent_data in Problem. The weights
field does not need to be specified, and if it is specified it will be ignored. By default, the
same agent data used to solve the problem will be used.

• integration (Integration, optional) – Integration configuration for how to build
nodes from which draws will be sampled, which will replace any nodes field in
sampling_agent_data. This configuration is required if sampling_agent_data
is specified without a nodes field.

• delta (array-like, optional) – More precise 𝛿(𝜃) than the estimated ProblemResults.
delta, which can be computed by passing a more precise integration rule to
ProblemResults.compute_delta(). By default, ProblemResults.delta is
used.

Returns Computed ImportanceSamplingResults.

Return type ImportanceSamplingResults

Examples

• Tutorial

The following methods can compute micro moment values, compute scores from micro data, or simulate such data.

ProblemResults.compute_micro_values(. . . ) Estimate micro moment values, 𝑓𝑚(𝑣).
ProblemResults.compute_micro_scores(dataset,
. . . )

Compute scores for observations 𝑛 ∈ 𝑁𝑑 from a micro
dataset 𝑑.

ProblemResults.compute_agent_scores(dataset)Compute scores for all agent-choices, treated as obser-
vations 𝑛 ∈ 𝑁𝑑 from a micro dataset 𝑑.

ProblemResults.simulate_micro_data(dataset)Simulate observations 𝑛 ∈ 𝑁𝑑 from a micro dataset 𝑑.

5.5.31 pyblp.ProblemResults.compute_micro_values

ProblemResults.compute_micro_values(micro_moments)
Estimate micro moment values, 𝑓𝑚(𝑣).

Parameters micro_moments (sequence of MicroMoment) – MicroMoment instances. The
value argument is ignored.

Returns Micro moment values 𝑓𝑚(𝑣).

Return type ndarray

Examples

• Tutorial
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5.5.32 pyblp.ProblemResults.compute_micro_scores

ProblemResults.compute_micro_scores(dataset, micro_data, integration=None)
Compute scores for observations 𝑛 ∈ 𝑁𝑑 from a micro dataset 𝑑.

The score for observation 𝑛 ∈ 𝑁𝑑 is

S𝑛 =
𝜕 logP𝑛

𝜕𝜃′
, (5.33)

in which the conditional probability of observation 𝑛 is

P𝑛 =

∑︀
𝑖∈𝐼𝑛

𝑤𝑖𝑡𝑛𝑠𝑖𝑗𝑛𝑡𝑛𝑤𝑑𝑖𝑗𝑛𝑡𝑛∑︀
𝑡∈𝑇

∑︀
𝑖∈𝐼𝑡

∑︀
𝑗∈𝐽𝑡∪{0} 𝑤𝑖𝑡𝑠𝑖𝑗𝑡𝑤𝑑𝑖𝑗𝑡

(5.34)

where 𝑖 ∈ 𝐼𝑛 integrates over unobserved heterogeneity for observation 𝑛.

Parameters

• dataset (MicroDataset) – The MicroDataset for which scores will be computed. The
compute_weights function is called separately for each observation 𝑛.

• micro_data (structured array-like) – Each row corresponds either to an observa-
tion 𝑛 or if there are multiple rows per observation, to an 𝑖 ∈ 𝐼𝑛 that inte-
grates over unobserved heterogeneity. In addition to the names of any demograph-
ics used in the agent_formulation and any specification of agent-specific product
'availability', the following fields are required:

– market_ids : (object) - Market IDs 𝑡𝑛 for each observation 𝑛.

– choice_indices : (int) - Within-market indices of choices 𝑗𝑛. If compute_weights
passed to the dataset returns an array with 𝐽𝑡 elements in its second axis, then choice
indices take on values from 0 to 𝐽𝑡 − 1 where 0 corresponds to the first inside good. If it
returns an array with 1+𝐽𝑡 elements in its second axis, then choice indices take on values
from 0 to 𝐽𝑡 where 0 corresponds to the outside good.

If the dataset is configured to support second choice data, second choices are also re-
quired:

– second_choice_indices : (int, optional) - Within-market indices of second choices 𝑘𝑛. If
compute_weights passed to the dataset returns an array with 𝐽𝑡 elements in its
third axis, then second choice indices take on values from 0 to 𝐽𝑡−1 where 0 corresponds
to the first inside good. If it returns an array with 1 + 𝐽𝑡 elements in its third axis, then
second choice indices take on values from 0 to 𝐽𝑡 where 0 corresponds to the outside
good.

The following fields are required if integration is not specified:

– micro_ids : (object, optional) - IDs corresponding to observations 𝑛, which should be
pre-sorted, from smallest to largest.

– weights : (numeric, optional) - Integration weights, 𝑤𝑖𝑡𝑛 , for integration over unobserved
heterogeneity 𝑖 ∈ 𝐼𝑛.

– nodes : (numeric, optional) - Unobserved agent characteristics called integration nodes,
𝜈. If there are more than 𝐾2 columns (the number of demand-side nonlinear product
characteristics), only the first 𝐾2 will be retained. If any columns of sigma are fixed at
zero, only the first few columns of these nodes will be used.

If these fields are specified, each row corresponds to an 𝑖 ∈ 𝐼𝑛, and there should generally
be multiple rows per observation 𝑛.
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The convenience function build_integration() can be useful when constructing cus-
tom nodes and weights.

Note: If nodes has multiple columns, it can be specified as a matrix or broken up into
multiple one-dimensional fields with column index suffixes that start at zero. For example,
if there are three columns of nodes, a nodes field with three columns can be replaced by
three one-dimensional fields: nodes0, nodes1, and nodes2.

• integration (Integration, optional) – Integration configuration for how to build
nodes and weights fields in micro_data for each observation 𝑛. If this configuration
is specified, any micro_ids, weights, and nodes in micro_data will be ignored.

If specified, each row of micro_data is treated as corresponding to a unique observation
𝑛, and will be duplicated by as many rows of nodes as are created by the Integration
configuration. Specifically, up to 𝐾2 columns of nodes (the number of demand-side non-
linear product characteristics) will be built for each observation 𝑛. If there are zeros on
the diagonal of Σ, nodes will not be built for those characteristics, to cut down on memory
usage.

Returns

Scores S𝑛. The list is in the same order as ProblemResults.theta (also see
ProblemResults.theta_labels). Each element of the list is an array of scores for
the corresponding parameter. The array is in the same order as observations appear in the
micro_data. Note that it is possible for parameters in ProblemResults.theta to me-
chanically have zero scores, for example if they are on a constant demographic.

Taking the mean of a parameter’s scores delivers the observed value for an optimal
MicroMoment that matches the score for that parameter.

If any scores are numpy.nan, this means that the probability of that observation is P𝑛 =
0, suggesting that the observation was not generated by the sampling process defined by the
dataset.

Return type list

5.5.33 pyblp.ProblemResults.compute_agent_scores

ProblemResults.compute_agent_scores(dataset, micro_data=None, integration=None)
Compute scores for all agent-choices, treated as observations 𝑛 ∈ 𝑁𝑑 from a micro dataset 𝑑.

This method is the same as ProblemResults.compute_micro_scores(), except it computes scores
for all possible choices of all Problem.agents. Each agent-choice is treated as a separate observation 𝑛.
Instead of returning an array, this method returns a mapping from market IDs to scores, to facilitate use by
compute_values of an optimal MicroMoment.

Parameters

• dataset (MicroDataset) – The MicroDataset for which scores will be computed. The
compute_weights function is called separately for each observation 𝑛.

• micro_data (structured array-like, optional) – By default, each row in Problem.
agents and each possible choice is treated as an observation 𝑛. In this case,
integration should generally be specified to define integration 𝑖 ∈ 𝐼𝑛 over unobserved
heterogeneity.
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If micro_data is specified, it should be of the form required by ProblemResults.
compute_micro_scores(), except without choice_indices or
second_choice_indices, since scores will be computed for all choices.

• integration (Integration, optional) – Integration configuration of the form re-
quired by ProblemResults.compute_micro_scores().

Returns

Scores S𝑛. The list is in the same order as ProblemResults.theta (also see
ProblemResults.theta_labels). Each element of the list is a mapping from mar-
ket IDs supported by the dataset to an array of scores for the corresponding parameter
and market. The array’s dimensions correspond to the dimensions of the weights returned
by compute_weights passed to dataset. Note that it is possible for parameters in
ProblemResults.theta to mechanically have zero scores, for example if they are on a
constant demographic.

To build an optimal MicroMoment that matches the score for a parameter,
compute_values in its single MicroPart should select the array corresponding to
that parameter and the requested market t. Any numpy.nan values in this array correspond
to agent-choices that are assigned a probability of P𝑛 = 0 by the sampling process defined by
dataset, so should be replaced by some arbitrary number (e.g., by passing the array of scores
through numpy.nan_to_num).

Return type list

5.5.34 pyblp.ProblemResults.simulate_micro_data

ProblemResults.simulate_micro_data(dataset, seed=None)
Simulate observations 𝑛 ∈ 𝑁𝑑 from a micro dataset 𝑑.

Each micro observation 𝑛 underlying the dataset 𝑑 is simulated according to agent weights 𝑤𝑖𝑡, choice proba-
bilities 𝑠𝑖𝑗𝑡, and survey weights 𝑤𝑑𝑖𝑗𝑡.

Parameters

• dataset (MicroDataset) – The MicroDataset for which micro data will be simulated.

• seed (int, optional) – Passed to numpy.random.RandomState to seed the random
number generator before data are simulated. By default, a seed is not passed to the random
number generator.

Returns

Micro data with as many rows as observations passed to the dataset. Fields:

• micro_ids : (object) - IDs corresponding to observations 𝑛.

• market_ids : (object) - Market IDs 𝑡𝑛 for each observation 𝑛.

• agent_indices : (int) - Within-market indices of agents 𝑖𝑛 that take on values from 0 to
𝐼𝑡 − 1.

• choice_indices : (int) - Within-market indices of simulated choices 𝑗𝑛. If
compute_weights passed to the dataset returns an array with 𝐽𝑡 elements in its sec-
ond axis, then choice indices take on values from 0 to 𝐽𝑡 − 1 where 0 corresponds to the
first inside good. If it returns an array with 1 + 𝐽𝑡 elements in its second axis, then choice
indices take on values from 0 to 𝐽𝑡 where 0 corresponds to the outside good.

If the dataset is configured to support second choice data, second choices will also be simu-
lated:
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• second_choice_indices : (int) - Within-market indices of simulated second choices 𝑘𝑛. If
compute_weights passed to the dataset returns an array with 𝐽𝑡 elements in its third
axis, then second choice indices take on values from 0 to 𝐽𝑡 − 1 where 0 corresponds to the
first inside good. If it returns an array with 1 + 𝐽𝑡 elements in its third axis, then second
choice indices take on values from 0 to 𝐽𝑡 where 0 corresponds to the outside good.

Integration nodes and demographics can be merged in on the market_ids and
agent_indices fields. Product characteristics can be merged in on the market_ids and
choice_indices fields. Product characteristics of any second choices can be merged in on
the market_ids and second_choice_indices fields.

Return type recarray

Examples

• Tutorial

5.6 Bootstrapped Problem Results Class

Parametric bootstrap computation returns the following class.

BootstrappedResults Bootstrapped results of a solved problem.

5.6.1 pyblp.BootstrappedResults

class pyblp.BootstrappedResults
Bootstrapped results of a solved problem.

This class has slightly modified versions of the following ProblemResults methods:

• ProblemResults.compute_aggregate_elasticities()

• ProblemResults.compute_elasticities()

• ProblemResults.compute_demand_jacobians()

• ProblemResults.compute_demand_hessians()

• ProblemResults.compute_profit_hessians()

• ProblemResults.compute_diversion_ratios()

• ProblemResults.compute_long_run_diversion_ratios()

• ProblemResults.compute_probabilities()

• ProblemResults.extract_diagonals()

• ProblemResults.extract_diagonal_means()

• ProblemResults.compute_delta()

• ProblemResults.compute_costs()

• ProblemResults.compute_passthrough()

• ProblemResults.compute_approximate_prices()

• ProblemResults.compute_prices()
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• ProblemResults.compute_shares()

• ProblemResults.compute_hhi()

• ProblemResults.compute_markups()

• ProblemResults.compute_profits()

• ProblemResults.compute_consumer_surpluses()

The difference is that each method returns an array with an extra first dimension along which bootstrapped
results are stacked These stacked results can be used to construct, for example, confidence intervals for post-
estimation outputs. Similarly, arrays of data (except for firm IDs and ownership matrices) passed as arguments
to methods should have an extra first dimension of size BootstrappedResults.draws.

problem_results
ProblemResults that was used to compute these bootstrapped results.

Type ProblemResults

bootstrapped_sigma
Bootstrapped Cholesky decomposition of the covariance matrix for unobserved taste heterogeneity, Σ.

Type ndarray

bootstrapped_pi
Bootstrapped parameters that measures how agent tastes vary with demographics, Π.

Type ndarray

bootstrapped_rho
Bootstrapped parameters that measure within nesting group correlations, 𝜌.

Type ndarray

bootstrapped_beta
Bootstrapped demand-side linear parameters, 𝛽.

Type ndarray

bootstrapped_gamma
Bootstrapped supply-side linear parameters, 𝛾.

Type ndarray

bootstrapped_prices
Bootstrapped prices, 𝑝. If a supply side was not estimated, these are unchanged prices. Otherwise, they
are equilibrium prices implied by each draw.

Type ndarray

bootstrapped_shares
Bootstrapped market shares, 𝑠, implied by each draw.

Type ndarray

bootstrapped_delta
Bootstrapped mean utility, 𝛿, implied by each draw.

Type ndarray

computation_time
Number of seconds it took to compute the bootstrapped results.

Type float
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draws
Number of bootstrap draws.

Type int

fp_converged
Flags for convergence of the iteration routine used to compute equilibrium prices in each market. Rows
are in the same order as Problem.unique_market_ids and column indices correspond to draws.

Type ndarray

fp_iterations
Number of major iterations completed by the iteration routine used to compute equilibrium prices in each
market for each draw. Rows are in the same order as Problem.unique_market_ids and column
indices correspond to draws.

Type ndarray

contraction_evaluations
Number of times the contraction used to compute equilibrium prices was evaluated in each market for each
draw. Rows are in the same order as Problem.unique_market_ids and column indices correspond
to draws.

Type ndarray

Examples

• Tutorial

This class has many of the same methods as ProblemResults(). It can also be pickled or converted into a
dictionary.

BootstrappedResults.to_pickle(path) Save these results as a pickle file.
BootstrappedResults.to_dict([attributes]) Convert these results into a dictionary that maps at-

tribute names to values.

5.6.2 pyblp.BootstrappedResults.to_pickle

BootstrappedResults.to_pickle(path)
Save these results as a pickle file.

Parameters path (str or Path) – File path to which these results will be saved.

5.6.3 pyblp.BootstrappedResults.to_dict

BootstrappedResults.to_dict(attributes=(’bootstrapped_sigma’, ’bootstrapped_pi’, ’boot-
strapped_rho’, ’bootstrapped_beta’, ’bootstrapped_gamma’,
’bootstrapped_prices’, ’bootstrapped_shares’, ’bootstrapped_delta’,
’computation_time’, ’draws’, ’fp_converged’, ’fp_iterations’,
’contraction_evaluations’))

Convert these results into a dictionary that maps attribute names to values.

Parameters attributes (sequence of str, optional) – Name of attributes that will be added
to the dictionary. By default, all BootstrappedResults attributes are added except for
BootstrappedResults.problem_results.
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Returns Mapping from attribute names to values.

Return type dict

5.7 Optimal Instrument Results Class

Optimal instrument computation returns the following results class.

OptimalInstrumentResults Results of optimal instrument computation.

5.7.1 pyblp.OptimalInstrumentResults

class pyblp.OptimalInstrumentResults
Results of optimal instrument computation.

The OptimalInstrumentResults.to_problem() method can be used to update the original
Problem with the computed optimal instruments.

problem_results
ProblemResults that was used to compute these optimal instrument results.

Type ProblemResults

demand_instruments
Estimated optimal demand-side instruments for 𝜃, denoted 𝑍opt

𝐷 .

Type ndarray

supply_instruments
Estimated optimal supply-side instruments for 𝜃, denoted 𝑍opt

𝑆 .

Type ndarray

supply_shifter_formulation
Formulation configuration for supply shifters that will by default be included in the full set of optimal
demand-side instruments. This is only constructed if a supply side was estimated, and it can be changed in
OptimalInstrumentResults.to_problem(). By default, this is the formulation for 𝑋ex

3 from
Problem excluding any variables in the formulation for 𝑋ex

1 .

Type Formulation or None

demand_shifter_formulation
Formulation configuration for demand shifters that will by default be included in the full set of optimal
supply-side instruments. This is only constructed if a supply side was estimated, and it can be changed in
OptimalInstrumentResults.to_problem(). By default, this is the formulation for 𝑋ex

1 from
Problem excluding any variables in the formulation for 𝑋ex

3 .

Type Formulation or None

inverse_covariance_matrix
Inverse of the sample covariance matrix of the estimated 𝜉 and 𝜔, which is used to normalize the expected
Jacobians. If a supply side was not estimated, this is simply the sample estimate of 1/𝜎2

𝜉 .

Type ndarray

expected_xi_by_theta_jacobian
Estimated 𝐸[𝜕𝜉𝜕𝜃 | 𝑍].

Type ndarray
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expected_omega_by_theta_jacobian
Estimated 𝐸[𝜕𝜔𝜕𝜃 | 𝑍].

Type ndarray

expected_prices
Vector of expected prices conditional on all exogenous variables, 𝐸[𝑝 | 𝑍], which may have been specified
in ProblemResults.compute_optimal_instruments().

Type ndarray

expected_shares
Vector of expected market shares conditional on all exogenous variables, 𝐸[𝑠 | 𝑍].

Type ndarray

computation_time
Number of seconds it took to compute optimal excluded instruments.

Type float

draws
Number of draws used to approximate the integral over the error term density.

Type int

fp_converged
Flags for convergence of the iteration routine used to compute equilibrium prices in each market. Rows
are in the same order as Problem.unique_market_ids and column indices correspond to draws.

Type ndarray

fp_iterations
Number of major iterations completed by the iteration routine used to compute equilibrium prices in each
market for each error term draw. Rows are in the same order as Problem.unique_market_ids and
column indices correspond to draws.

Type ndarray

contraction_evaluations
Number of times the contraction used to compute equilibrium prices was evaluated in each market for each
error term draw. Rows are in the same order as Problem.unique_market_ids and column indices
correspond to draws.

Type ndarray

Examples

• Tutorial

Methods

to_dict([attributes]) Convert these results into a dictionary that maps at-
tribute names to values.

to_pickle(path) Save these results as a pickle file.
to_problem([supply_shifter_formulation, . . . ]) Re-create the problem with estimated feasible opti-

mal instruments.
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The results can be pickled or converted into a dictionary.

OptimalInstrumentResults.
to_pickle(path)

Save these results as a pickle file.

OptimalInstrumentResults.
to_dict([attributes])

Convert these results into a dictionary that maps at-
tribute names to values.

5.7.2 pyblp.OptimalInstrumentResults.to_pickle

OptimalInstrumentResults.to_pickle(path)
Save these results as a pickle file.

Parameters path (str or Path) – File path to which these results will be saved.

5.7.3 pyblp.OptimalInstrumentResults.to_dict

OptimalInstrumentResults.to_dict(attributes=(’demand_instruments’, ’supply_instruments’, ’in-
verse_covariance_matrix’, ’expected_xi_by_theta_jacobian’,
’expected_omega_by_theta_jacobian’, ’expected_prices’,
’expected_shares’, ’computation_time’, ’draws’,
’fp_converged’, ’fp_iterations’, ’contraction_evaluations’))

Convert these results into a dictionary that maps attribute names to values.

Parameters attributes (sequence of str, optional) – Name of attributes that will
be added to the dictionary. By default, all OptimalInstrumentResults at-
tributes are added except for OptimalInstrumentResults.problem_results,
OptimalInstrumentResults.supply_shifter_formulation, and
OptimalInstrumentResults.demand_shifter_formulation.

Returns Mapping from attribute names to values.

Return type dict

Examples

• Tutorial

They can also be converted into a Problem with the following method.

OptimalInstrumentResults.
to_problem([. . . ])

Re-create the problem with estimated feasible optimal
instruments.

5.7.4 pyblp.OptimalInstrumentResults.to_problem

OptimalInstrumentResults.to_problem(supply_shifter_formulation=None, de-
mand_shifter_formulation=None, product_data=None,
drop_indices=None)

Re-create the problem with estimated feasible optimal instruments.
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The re-created problem will be exactly the same, except that instruments will be replaced with estimated feasible
optimal instruments.

Note: Most of the explanation here is only important if a supply side was estimated.

The optimal excluded demand-side instruments consist of the following:

1. Estimated optimal demand-side instruments for 𝜃, 𝑍opt
𝐷 , excluding columns of instruments for any pa-

rameters on exogenous linear characteristics that were not concentrated out, but rather included in 𝜃 by
Problem.solve().

2. Optimal instruments for any linear demand-side parameters on endogenous product characteristics, 𝛼,
which were concentrated out and hence not included in 𝜃. These optimal instruments are simply an inte-
gral of the endogenous product characteristics, 𝑋en

1 , over the joint density of 𝜉 and 𝜔. It is only possible to
concentrate out 𝛼 when there isn’t a supply side, so the approximation of these optimal instruments is sim-
ply 𝑋en

1 evaluated at the constant vector of expected prices, 𝐸[𝑝 | 𝑍], specified in ProblemResults.
compute_optimal_instruments().

3. If a supply side was estimated, any supply shifters, which are by default formulated by
OptimalInstrumentResults.supply_shifter_formulation: all characteristics in 𝑋ex

3

not in 𝑋ex
1 .

Similarly, if a supply side was estimated, the optimal excluded supply-side instruments consist of the following:

1. Estimated optimal supply-side instruments for 𝜃, 𝑍opt
𝑆 , excluding columns of instruments for

any parameters on exogenous linear characteristics that were not concentrated out, but rather
included in 𝜃 by Problem.solve().

2. Optimal instruments for any linear supply-side parameters on endogenous product character-
istics, 𝛾en, which were concentrated out an hence not included in 𝜃. This is only relevant if
shares were included in the formulation for 𝑋3 in Problem. The corresponding optimal
instruments are simply an integral of the endogenous product characteristics, 𝑋en

3 , over the joint
density of 𝜉 and 𝜔. The approximation of these optimal instruments is simply 𝑋en

3 evaluated at
the market shares that arise under the constant vector of expected prices, 𝐸[𝑝 | 𝑍], specified in
ProblemResults.compute_optimal_instruments().

2. If a supply side was estimated, any demand shifters, which are by default formulated by
OptimalInstrumentResults.demand_shifter_formulation: all characteristics
in 𝑋ex

1 not in 𝑋ex
3 .

As usual, the excluded demand-side instruments will be supplemented with 𝑋ex
1 and the excluded supply-side

instruments will be supplemented with 𝑋ex
3 . The same fixed effects configured in Problem will be absorbed.

Warning: If a supply side was estimated, the addition of supply- and demand-shifters may create collinear-
ity issues. Make sure to check that shifters and other product characteristics are not collinear.

Parameters

• supply_shifter_formulation (Formulation, optional) – Formulation config-
uration for supply shifters to be included in the set of optimal demand-side instruments.
This is only used if a supply side was estimated. Intercepts will be ignored. By default,
OptimalInstrumentResults.supply_shifter_formulation is used.

• demand_shifter_formulation (Formulation, optional) – Formulation config-
uration for demand shifters to be included in the set of optimal supply-side instruments.
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This is only used if a supply side was estimated. Intercepts will be ignored. By default,
OptimalInstrumentResults.demand_shifter_formulation is used.

• product_data (structured array-like, optional) – Product data used instead of what was
saved from product_data when initializing the original Problem. This may need to
be specified if either the supply or demand shifter formulation contains some term that was
not stored into memory, such as a categorical variable or a mathematical expression.

• drop_indices (sequence of int, optional) – Which column indices to
drop from OptimalInstrumentResults.demand_instruments and
OptimalInstrumentResults.supply_instruments. By default, the only
columns dropped are those that correspond to parameters in 𝜃 on exogenous linear
characteristics.

Returns OptimalInstrumentProblem, which is a Problem updated to use the estimated
optimal instruments.

Return type OptimalInstrumentProblem

Examples

• Tutorial

This method returns the following class, which behaves exactly like a Problem.

OptimalInstrumentProblem A BLP problem updated with optimal excluded instru-
ments.

5.7.5 pyblp.OptimalInstrumentProblem

class pyblp.OptimalInstrumentProblem
A BLP problem updated with optimal excluded instruments.

This class can be used exactly like Problem.

5.8 Importance Sampling Results Class

Importance sampling returns the following results class:

ImportanceSamplingResults Results of importance sampling.

5.8.1 pyblp.ImportanceSamplingResults

class pyblp.ImportanceSamplingResults
Results of importance sampling.

Along with the sampled agents, these results also contain a number of useful importance sampling diagnostics
from Owen (2013).

The ImportanceSamplingResults.to_problem() method can be used to update the original
Problem with the importance sampling agent data.
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problem_results
ProblemResults that was used to compute these importance sampling results.

Type ProblemResults

sampled_agents
Importance sampling agent data structured as Agents. The data_to_dict() function can be used to
convert this into a more usable data type.

Type Agents

computation_time
Number of seconds it took to do importance sampling.

Type float

draws
Number of importance sampling draws in each market.

Type int

diagnostic_market_ids
Market IDs the correspond to the ordering of the following arrays of weight diagnostics.

Type ndarray

weight_sums
Sum of weights in each market:

∑︀
𝑖 𝑤𝑖𝑡. If importance sampling was successful, weights should not sum

to numbers too far from one.

Type ndarray

effective_draws

Effective sample sizes in each market: (
∑︀

𝑖 𝑤𝑖𝑡)
2∑︀

𝑖 𝑤
2
𝑖𝑡

.

Type ndarray

effective_draws_for_variance

Effective sample sizes for variance estimates in each market: (
∑︀

𝑖 𝑤
2
𝑖𝑡)

2∑︀
𝑖 𝑤

4
𝑖𝑡

.

Type ndarray

effective_draws_for_skewness

Effective sample sizes for gauging skewness in each market: (
∑︀

𝑖 𝑤
2
𝑖𝑡)

3

(
∑︀

𝑖 𝑤
3
𝑖𝑡)

2 .

Type ndarray

Examples

• Tutorial

Methods

to_dict([attributes]) Convert these results into a dictionary that maps at-
tribute names to values.

to_pickle(path) Save these results as a pickle file.
to_problem() Re-create the problem with the agent data con-

structed from importance sampling.
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The results can be pickled or converted into a dictionary.

ImportanceSamplingResults.
to_pickle(path)

Save these results as a pickle file.

ImportanceSamplingResults.
to_dict([attributes])

Convert these results into a dictionary that maps at-
tribute names to values.

5.8.2 pyblp.ImportanceSamplingResults.to_pickle

ImportanceSamplingResults.to_pickle(path)
Save these results as a pickle file.

Parameters path (str or Path) – File path to which these results will be saved.

5.8.3 pyblp.ImportanceSamplingResults.to_dict

ImportanceSamplingResults.to_dict(attributes=(’sampled_agents’, ’computation_time’,
’draws’, ’diagnostic_market_ids’, ’weight_sums’, ’ef-
fective_draws’, ’effective_draws_for_variance’, ’effec-
tive_draws_for_skewness’))

Convert these results into a dictionary that maps attribute names to values.

Parameters attributes (sequence of str, optional) – Names of attributes that will be added to
the dictionary. By default, all ImportanceSamplingResults attributes are added except
for ImportanceSamplingResults.problem_results.

Returns Mapping from attribute names to values.

Return type dict

Examples

• Tutorial

They can also be converted into a Problem with the following method.

ImportanceSamplingResults.
to_problem()

Re-create the problem with the agent data constructed
from importance sampling.

5.8.4 pyblp.ImportanceSamplingResults.to_problem

ImportanceSamplingResults.to_problem()
Re-create the problem with the agent data constructed from importance sampling.

The re-created problem will be exactly the same, except Problem.agents will be replaced with
ImportanceSamplingResults.sampled_agents.

Returns ImportanceSamplingProblem, which is a Problem updated to use agent data con-
structed from importance sampling.

Return type ImportanceSamplingProblem
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Examples

• Tutorial

This method returns the following class, which behaves exactly like a Problem.

ImportanceSamplingProblem A BLP problem updated after importance sampling.

5.8.5 pyblp.ImportanceSamplingProblem

class pyblp.ImportanceSamplingProblem
A BLP problem updated after importance sampling.

This class can be used exactly like Problem.

5.9 Simulation Class

The following class allows for evaluation of more complicated counterfactuals than is possible with
ProblemResults methods, or for simulation of synthetic data from scratch.

Simulation(product_formulations, . . . [, . . . ]) Simulation of data in BLP-type models.

5.9.1 pyblp.Simulation

class pyblp.Simulation(product_formulations, product_data, beta, sigma=None, pi=None,
gamma=None, rho=None, agent_formulation=None, agent_data=None,
integration=None, xi=None, omega=None, xi_variance=1,
omega_variance=1, correlation=0.9, rc_types=None, epsilon_scale=1.0,
costs_type=’linear’, seed=None)

Simulation of data in BLP-type models.

Any data left unspecified are simulated during initialization. Simulated prices and shares can be replaced
by Simulation.replace_endogenous() with equilibrium values that are consistent with true pa-
rameters. Less commonly, simulated exogenous variables can be replaced instead by Simulation.
replace_exogenous(). To choose your own prices, refer to the first note in Simulation.
replace_endogenous(). Simulations are typically used for two purposes:

1. Solving for equilibrium prices and shares under more complicated counterfactuals than is possible with
ProblemResults.compute_prices() and ProblemResults.compute_shares(). For
example, this class can be initialized with estimated parameters, structural errors, and marginal costs from
a ProblemResults(), but with changed data (fewer products, new products, different characteristics,
etc.) and Simulation.replace_endogenous() can be used to compute the corresponding prices
and shares.

2. Simulation of BLP-type models from scratch. For example, a model with fixed true parameters can be
simulated many times, converted into problems with SimulationResults.to_problem(), and
solved with Problem.solve() to evaluate in a Monte Carlo study how well the true parameters can be
recovered.

If data for variables (used to formulate product characteristics in 𝑋1, 𝑋2, and 𝑋3, as well as agent demographics,
𝑑, and endogenous prices and market shares 𝑝 and 𝑠) are not provided, the values for each unspecified variable
are drawn independently from the standard uniform distribution. In each market 𝑡, market shares are divided
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by the number of products in the market 𝐽𝑡. Typically, Simulation.replace_endogenous() is used to
replace prices and shares with equilibrium values that are consistent with true parameters.

If data for unobserved demand-and supply-side product characteristics, 𝜉 and 𝜔, are not provided, they are by
default drawn from a mean-zero bivariate normal distribution.

After variables are loaded or simulated, any unspecified integration nodes and weights, 𝜈 and 𝑤, are constructed
according to a specified Integration configuration.

Parameters

• product_formulations (Formulation or sequence of Formulation) – Formulation
configuration or a sequence of up to three Formulation configurations for the matrix of
demand-side linear product characteristics, 𝑋1, for the matrix of demand-side nonlinear
product characteristics, 𝑋2, and for the matrix of supply-side characteristics, 𝑋3, respec-
tively. If the formulation for 𝑋2 is not specified or is None, the logit (or nested logit) model
will be simulated.

The shares variable should not be included in the formulations for 𝑋1 or 𝑋2. If
shares is included in the formulation for 𝑋3 and product_data does not include
shares, one will likely want to set constant_costs=False in Simulation.
replace_endogenous().

The prices variable should not be included in the formulation for 𝑋3, but it should be
included in the formulation for 𝑋1 or 𝑋2 (or both). Variables that cannot be loaded from
product_data will be drawn from independent standard uniform distributions. Unlike
in Problem, fixed effect absorption is not supported during simulation.

Warning: Characteristics that involve prices, 𝑝, or shares, 𝑠, should always be formu-
lated with the prices and shares variables, respectively. If another name is used,
Simulation will not understand that the characteristic is endogenous. For example,
to include a 𝑝2 characteristic, include I(prices**2) in a formula instead of manually
constructing and including a prices_squared variable.

• product_data (structured array-like) – Each row corresponds to a product. Markets can
have differing numbers of products. The convenience function build_id_data() can
be used to construct the following required ID data:

– market_ids : (object) - IDs that associate products with markets.

– firm_ids : (object) - IDs that associate products with firms.

Custom ownership matrices can be specified as well:

– ownership : (numeric, optional) - Custom stacked 𝐽𝑡 × 𝐽𝑡 ownership or product hold-
ing matrices, H , for each market 𝑡, which can be built with build_ownership().
By default, standard ownership matrices are built only when they are needed to reduce
memory usage. If specified, there should be as many columns as there are products in the
market with the most products. Rightmost columns in markets with fewer products will
be ignored.

Note: The ownership field can either be a matrix or can be broken up into multiple
one-dimensional fields with column index suffixes that start at zero. For example, if there
are three products in each market, a ownership field with three columns can be replaced
by three one-dimensional fields: ownership0, ownership1, and ownership2.

It may be convenient to define IDs for different products:
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– product_ids (object, optional) - IDs that identify products within markets. There can be
multiple columns.

To simulate a nested logit or random coefficients nested logit (RCNL) model, nesting groups
must be specified:

– nesting_ids (object, optional) - IDs that associate products with nesting groups. When
these IDs are specified, rho must be specified as well.

Along with market_ids, firm_ids, product_ids, and nesting_ids, the names
of any additional fields can typically be used as variables in product_formulations.
However, there are a few variable names such as 'X1', which are reserved for use by
Products.

• beta (array-like) – Vector of demand-side linear parameters, 𝛽. Elements correspond to
columns in 𝑋1, which is formulated by product_formulations.

• sigma (array-like, optional) – Lower-triangular Cholesky root of the covariance matrix for
unobserved taste heterogeneity, Σ. Rows and columns correspond to columns in 𝑋2, which
is formulated by product_formulations. If 𝑋2 is not formulated, this should not be
specified, since the logit model will be simulated.

• pi (array-like, optional) – Parameters that measure how agent tastes vary with demograph-
ics, Π. Rows correspond to the same product characteristics as in sigma. Columns cor-
respond to columns in 𝑑, which is formulated by agent_formulation. If 𝑑 is not
formulated, this should not be specified.

• gamma (array-like, optional) – Vector of supply-side linear parameters, 𝛾. Elements corre-
spond to columns in 𝑋3, which is formulated by product_formulations. If 𝑋3 is not
formulated, this should not be specified.

• rho (array-like, optional) – Parameters that measure within nesting group correlation,
𝜌. If this is a scalar, it corresponds to all groups defined by the nesting_ids field
of product_data. If this is a vector, it must have 𝐻 elements, one for each nest-
ing group. Elements correspond to group IDs in the sorted order of Simulation.
unique_nesting_ids. If nesting IDs are not specified, this should not be specified
either.

• agent_formulation (Formulation, optional) – Formulation configuration for the
matrix of observed agent characteristics called demographics, 𝑑, which will only be included
in the model if this formulation is specified. Any variables that cannot be loaded from
agent_data will be drawn from independent standard uniform distributions.

• agent_data (structured array-like, optional) – Each row corresponds to an agent. Mar-
kets can have differing numbers of agents. Since simulated agents are only used if there
are demand-side nonlinear product characteristics, agent data should only be specified if 𝑋2

is formulated in product_formulations. If agent data are specified, market IDs are
required:

– market_ids : (object, optional) - IDs that associate agents with markets. The set of
distinct IDs should be the same as the set in product_data. If integration is
specified, there must be at least as many rows in each market as the number of nodes and
weights that are built for the market.

If integration is not specified, the following fields are required:

– weights : (numeric, optional) - Integration weights, 𝑤, for integration over agent choice
probabilities.

– nodes : (numeric, optional) - Unobserved agent characteristics called integration nodes,
𝜈. If there are more than 𝐾2 columns (the number of demand-side nonlinear product
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characteristics), only the first 𝐾2 will be used. If any columns of sigma are fixed at
zero, only the first few columns of these nodes will be used.

The convenience function build_integration() can be useful when constructing cus-
tom nodes and weights.

Note: If nodes has multiple columns, it can be specified as a matrix or broken up into
multiple one-dimensional fields with column index suffixes that start at zero. For example,
if there are three columns of nodes, a nodes field with three columns can be replaced by
three one-dimensional fields: nodes0, nodes1, and nodes2.

It may be convenient to define IDs for different agents:

– agent_ids (object, optional) - IDs that identify agents within markets. There can be
multiple of the same ID within a market.

Along with market_ids and agent_ids, the names of any additional fields can
typically be used as variables in agent_formulation. The exception is the name
'demographics', which is reserved for use by Agents.

In addition to standard demographic variables 𝑑𝑖𝑡, it is also possible to specify product-
specific demographics 𝑑𝑖𝑗𝑡. A typical example is geographic distance of agent 𝑖 from prod-
uct 𝑗. If agent_formulation has, for example, 'distance', instead of including a
single 'distance' field in agent_data, one should instead include 'distance0',
'distance1', 'distance2' and so on, where the index corresponds to the order in
which products appear within market in product_data. For example, 'distance5'
should measure the distance of agents to the fifth product within the market, as ordered in
product_data. The last index should be the number of products in the largest market,
minus one. For markets with fewer products than this maximum number, latter columns will
be ignored.

Finally, by default each agent 𝑖 in market 𝑡 is faced with the same choice set of product
𝑗, but it is possible to specify agent-specific availability 𝑎𝑖𝑗𝑡 much in the same way that
product-specific demographics are specified. To do so, the following field can be specified:

– availability : (numeric, optional) - Agent-specific product availability, 𝑎. Choice proba-
bilities in (3.5) are modified according to

𝑠𝑖𝑗𝑡 =
𝑎𝑖𝑗𝑡 exp𝑉𝑖𝑗𝑡

1 +
∑︀

𝑘∈𝐽𝑡
𝑎𝑖𝑗𝑡 exp𝑉𝑖𝑘𝑡

, (5.35)

and similarly for the nested logit model and consumer surplus calculations. By default,
all 𝑎𝑖𝑗𝑡 = 1. To have a product 𝑗 be unavailable to agent 𝑖, set 𝑎𝑖𝑗𝑡 = 0.

Agent-specific availability is specified in the same way that product-specific demo-
graphics are specified. In agent_data, one can include 'availability0',
'availability1', 'availability2', and so on, where the index corresponds
to the order in which products appear within market in product_data. The last index
should be the number of products in the largest market, minus one. For markets with
fewer products than this maximum number, latter columns will be ignored.

• integration (Integration, optional) – Integration configuration for how to build
nodes and weights for integration over agent choice probabilities, which will replace any
nodes and weights fields in agent_data. This configuration is required if nodes
and weights in agent_data are not specified. It should not be specified if 𝑋2 is not
formulated in product_formulations.
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If this configuration is specified, 𝐾2 columns of nodes (the number of demand-side non-
linear product characteristics) will be built. However, if sigma is left unspecified or is
specified with columns fixed at zero, fewer columns will be used.

• xi (array-like, optional) – Unobserved demand-side product characteristics, 𝜉. By default,
if 𝑋3 is formulated, each pair of unobserved characteristics in this vector and 𝜔 is drawn
from a mean-zero bivariate normal distribution. This must be specified if 𝑋3 is not formu-
lated or if omega is specified.

• omega (array-like, optional) – Unobserved supply-side product characteristics, 𝜔. By de-
fault, if 𝑋3 is formulated, each pair of unobserved characteristics in this vector and 𝜉 is
drawn from a mean-zero bivariate normal distribution. This must be specified if 𝑋3 is for-
mulated and xi is specified. It is ignored if 𝑋3 is not formulated.

• xi_variance (float, optional) – Variance of 𝜉. The default value is 1.0. This is ignored
if xi or omega is specified.

• omega_variance (float, optional) – Variance of 𝜔. The default value is 1.0. This is
ignored if xi or omega is specified.

• correlation (float, optional) – Correlation between 𝜉 and 𝜔. The default value is 0.9.
This is ignored if xi or omega is specified.

• rc_types (sequence of str, optional) – Random coefficient types:

– 'linear' (default) - The random coefficient is as defined in (3.3).

– 'log' - The random coefficient’s column in (3.3) is exponentiated before being pre-
multiplied by 𝑋2. It will take on values bounded from below by zero.

– 'logit' - The random coefficient’s column in (3.3) is passed through the inverse logit
function before being pre-multiplied by 𝑋2. It will take on values bounded from below
by zero and above by one.

The list should have as many strings as there are columns in 𝑋2. Each string determines the
type of the random coefficient on the corresponding product characteristic in 𝑋2.

A typical example of when to use 'log' is to have a lognormal coefficient on prices.
Implementing this typically involves having an I(-prices) in the formulation for 𝑋2,
and instead of including prices in 𝑋1, including a 1 in the agent_formulation.
Then the corresponding coefficient in Π will serve as the mean parameter for the lognormal
random coefficient on negative prices, −𝑝𝑗𝑡.

• epsilon_scale (float, optional) – Factor by which the Type I Extreme Value idiosyn-
cratic preference term, 𝜖𝑖𝑗𝑡, is scaled. By default, 𝜖𝑖𝑗𝑡 is not scaled. The typical use of
this parameter is to approximate the pure characteristics model of Berry and Pakes (2007)
by choosing a value smaller than 1.0. As this scaling factor approaches zero, the model
approaches the pure characteristics model in which there is no idiosyncratic preference term.

For more information about choosing this parameter and estimating models where
it is smaller than 1.0, refer to the same argument in Problem.solve(). In
some situations, it may be easier to solve simulations with small epsilon scaling fac-
tors by using Simulation.replace_exogenous() rather than Simulation.
replace_endogenous().

• costs_type (str, optional) – Specification of the marginal cost function 𝑐 = 𝑓(𝑐) in (3.9).
The following specifications are supported:

– 'linear' (default) - Linear specification: 𝑐 = 𝑐.

– 'log' - Log-linear specification: 𝑐 = log 𝑐.
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• seed (int, optional) – Passed to numpy.random.RandomState to seed the random
number generator before data are simulated. By default, a seed is not passed to the random
number generator.

product_formulations
Formulation configurations for 𝑋1, 𝑋2, and 𝑋3, respectively.

Type tuple

agent_formulation
Formulation configuration for 𝑑.

Type tuple

product_data
Synthetic product data that were loaded or simulated during initialization. Typically, Simulation.
replace_endogenous() is used replace prices and shares with equilibrium values that are consistent
with true parameters. The data_to_dict() function can be used to convert this into a more usable
data type.

Type recarray

agent_data
Synthetic agent data that were loaded or simulated during initialization. The data_to_dict() function
can be used to convert this into a more usable data type.

Type recarray

integration
Integration configuration for how any nodes and weights were built during initialization.

Type Integration

products
Product data structured as Products, which consists of data taken from Simulation.
product_data along with matrices build according to Simulation.product_formulations.
The data_to_dict() function can be used to convert this into a more usable data type.

Type Products

agents
Agent data structured as Agents, which consists of data taken from Simulation.agent_data or
built by Simulation.integration along with any demographics formulated by Simulation.
agent_formulation. The data_to_dict() function can be used to convert this into a more
usable data type.

Type Agents

unique_market_ids
Unique market IDs in product and agent data.

Type ndarray

unique_firm_ids
Unique firm IDs in product data.

Type ndarray

unique_nesting_ids
Unique nesting IDs in product data.

Type ndarray
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unique_product_ids
Unique product IDs in product data.

Type ndarray

unique_agent_ids
Unique agent IDs in agent data.

Type ndarray

beta
Demand-side linear parameters, 𝛽.

Type ndarray

sigma
Cholesky root of the covariance matrix for unobserved taste heterogeneity, Σ.

Type ndarray

gamma
Supply-side linear parameters, 𝛾.

Type ndarray

pi
Parameters that measures how agent tastes vary with demographics, Π.

Type ndarray

rho
Parameters that measure within nesting group correlation, 𝜌.

Type ndarray

xi
Unobserved demand-side product characteristics, 𝜉.

Type ndarray

omega
Unobserved supply-side product characteristics, 𝜔.

Type ndarray

rc_types
Random coefficient types.

Type list of str

epsilon_scale
Factor by which the Type I Extreme Value idiosyncratic preference term, 𝜖𝑖𝑗𝑡, is scaled.

Type float

costs_type
Functional form of the marginal cost function 𝑐 = 𝑓(𝑐).

Type str

T
Number of markets, 𝑇 .

Type int

N
Number of products across all markets, 𝑁 .
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Type int

F
Number of firms across all markets, 𝐹 .

Type int

I
Number of agents across all markets, 𝐼 .

Type int

K1
Number of demand-side linear product characteristics, 𝐾1.

Type int

K2
Number of demand-side nonlinear product characteristics, 𝐾2.

Type int

K3
Number of supply-side characteristics, 𝐾3.

Type int

D
Number of demographic variables, 𝐷.

Type int

MD
Number of demand-side instruments, 𝑀𝐷, which is always zero because instruments are added or con-
structed in SimulationResults.to_problem().

Type int

MS
Number of supply-side instruments, 𝑀𝑆 , which is always zero because instruments are added or con-
structed in SimulationResults.to_problem().

Type int

MC
Number of covariance instruments, 𝑀𝐶 .

Type int

ED
Number of absorbed dimensions of demand-side fixed effects, 𝐸𝐷, which is always zero because simula-
tions do not support fixed effect absorption.

Type int

ES
Number of absorbed dimensions of supply-side fixed effects, 𝐸𝑆 , which is always zero because simulations
do not support fixed effect absorption.

Type int

H
Number of nesting groups, 𝐻 .

Type int
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Examples

• Tutorial

Methods

replace_endogenous([costs, prices, . . . ]) Replace simulated prices and market shares with
equilibrium values that are consistent with true pa-
rameters.

replace_exogenous(X1_name[, X3_name,
delta, . . . ])

Replace exogenous product characteristics with val-
ues that are consistent with true parameters.

Once initialized, the following method replaces prices and shares with equilibrium values that are consistent with true
parameters.

Simulation.replace_endogenous([costs,
. . . ])

Replace simulated prices and market shares with equi-
librium values that are consistent with true parameters.

5.9.2 pyblp.Simulation.replace_endogenous

Simulation.replace_endogenous(costs=None, prices=None, iteration=None, constant_costs=True,
compute_gradients=True, compute_hessians=True, er-
ror_behavior=’raise’)

Replace simulated prices and market shares with equilibrium values that are consistent with true parameters.

This method is the standard way of solving the simulation. Prices and market shares are computed in each
market by iterating over the 𝜁-markup contraction in (3.52):

𝑝← 𝑐+ 𝜁(𝑝). (5.36)

Note: To not replace prices, pass the desired prices to prices and use an Iteration configuration with
method='return'. This just uses the iteration “routine” that simply returns the the starting values, which
are prices.

Using this same fake iteration routine and not setting prices will result in a simulation under perfect (instead of
Bertrand) competition because the default starting values for the iteration routine are marginal costs.

Note: This method supports parallel() processing. If multiprocessing is used, market-by-market compu-
tation of prices and shares will be distributed among the processes.

Parameters

• costs (array-like, optional) – Marginal costs, 𝑐. By default, 𝑐 = 𝑋3𝛾+𝜔 if costs_type
was 'linear' in Simulation (the default), and the exponential of this if it was 'log'.
Marginal costs must be specified if 𝑋3 was not formulated in Simulation. If marginal
costs depend on prices through market shares, they will be updated to reflect different prices
during each iteration of the routine.
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• prices (array-like, optional) – Prices at which the fixed point iteration routine will start.
By default, costs, are used as starting values.

• iteration (Iteration, optional) – Iteration configuration for how to solve the fixed
point problem. By default, Iteration('simple', {'atol': 1e-12}) is used.

• constant_costs (bool, optional) – Whether to assume that marginal costs, 𝑐, remain
constant as equilibrium prices and shares change. By default this is True, which means
that firms treat marginal costs as constant (equal to costs) when setting prices. If set to
False, marginal costs will be allowed to adjust if shares was included in the formulation
for 𝑋3. When simulating fake data, it likely makes more sense to set this to False since
otherwise arbitrary shares simulated by Simulation will be used in marginal costs.

• compute_gradients (bool, optional) – Whether to compute profit gradients to verify
first order conditions. This is by default True. Setting it to False will slightly speed up
computation, but first order conditions will not be reported.

• compute_hessians (bool, optional) – Whether to compute profit Hessians to verify
second order conditions. This is by default True. Setting it to False will slightly speed
up computation, but second order conditions will not be reported.

• error_behavior (str, optional) – How to handle errors when computing prices and
shares. For example, the fixed point routine may not converge if the effects of nonlinear
parameters on price overwhelm the linear parameter on price, which should be sufficiently
negative. The following behaviors are supported:

– 'raise' (default) - Raise an exception.

– 'warn' - Use the last computed prices and shares. If the fixed point routine fails to
converge, these are the last prices and shares computed by the routine. If there are other
issues, these are the starting prices and their associated shares.

Returns SimulationResults of the solved simulation.

Return type SimulationResults

Examples

• Tutorial

A less common way to solve the simulation is to assume simulated prices and shares represent and equilibrium and to
replace exogenous variables instead.

Simulation.replace_exogenous(X1_name[,
. . . ])

Replace exogenous product characteristics with values
that are consistent with true parameters.

5.9.3 pyblp.Simulation.replace_exogenous

Simulation.replace_exogenous(X1_name, X3_name=None, delta=None, iteration=None,
fp_type=’safe_linear’, shares_bounds=(1e-300, None), er-
ror_behavior=’raise’)

Replace exogenous product characteristics with values that are consistent with true parameters.

This method implements a less common way of solving the simulation. It may be preferable to Simulation.
replace_endogenous() when for some reason it is desirable to retain the prices and market shares from
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Simulation, which are assumed to be in equilibrium. For example, it can be helpful when approximat-
ing the pure characteristics model of Berry and Pakes (2007) by setting a small epsilon_scale value in
Simulation.

For this method of solving the simulation to be used, there must be an exogenous product characteristic 𝑣 that
shows up only in 𝑋ex

1 , and if there is a supply side, another product characteristic 𝑤 that shows up only in 𝑋ex
3 .

These characteristics will be replaced with values that are consistent with true parameters.

First, the mean utility 𝛿 is computed in each market by iterating over the contraction in (3.13) and (𝛿 − 𝜉 −
𝑋1𝛽)𝛽

−1
𝑣 is added to the 𝑣 from Simulation. Here, 𝛽𝑣 is the linear parameter in 𝛽 on 𝑣.

With a supply side, the marginal cost function 𝑐 is computed according to (3.7) and (3.9) and (𝑐−𝜔−𝑋3𝛾)𝛾
−1
𝑤

is added to the 𝑤 from Simulation. Here, 𝛾𝑤 is the linear parameter in 𝛾 on 𝑤.

Note: This method supports parallel() processing. If multiprocessing is used, market-by-market compu-
tation of prices and shares will be distributed among the processes.

Parameters

• X1_name (str) – The name of the variable 𝑣 in 𝑋ex
1 that will be replaced. It should show up

only once in the formulation for 𝑋1 from Simulation and it should not be transformed
in any way.

• X3_name (str, optional) – The name of the variable 𝑤 in 𝑋ex
3 that will be replaced. It

should show up only once in the formulation for 𝑋3 from Simulation and it should not
be transformed in any way. This will only be used if there is a supply side.

• delta (array-like, optional) – Initial values for the mean utility, 𝛿, which the fixed point
iteration routine will start at. By default, the solution to the logit model in (3.46) is used. If
there is a nesting structure, solution to the nested logit model in (3.47) under the initial rho
is used instead.

• iteration (Iteration, optional) – Iteration configuration for how to solve the fixed
point problem used to compute 𝛿 in each market. This configuration is only relevant if
there are nonlinear parameters, since 𝛿 can be estimated analytically in the logit model. By
default, Iteration('squarem', {'atol': 1e-14}) is used. For more informa-
tion, refer to the same argument in Problem.solve().

• fp_type (str, optional) – Configuration for the type of contraction mapping used to com-
pute 𝛿. For information about the different types, refer to the same argument in Problem.
solve().

• shares_bounds (tuple, optional) – Configuration for 𝑠𝑗𝑡(𝛿, 𝜃) bounds of the form (lb,
ub), in which both lb and ub are floats or None. By default, simulated shares are
bounded from below by 1e-300. This is only relevant if fp_type is 'safe_linear'
or 'linear'. Bounding shares in the contraction does nothing with a nonlinear fixed
point. For more information, refer to Problem.solve().

• error_behavior (str, optional) – How to handle errors when computing 𝛿 and 𝑐. The
following behaviors are supported:

– 'raise' (default) - Raise an exception.

– 'warn' - Use the last computed 𝛿 and 𝑐. If the fixed point routine fails to converge,
these are the last 𝛿 and the associated 𝑐 by the routine. If there are other issues, these are
the starting 𝛿 values and their associated 𝑐.

Returns SimulationResults of the solved simulation.

5.9. Simulation Class 225



PyBLP, Release 1.1.0

Return type SimulationResults

Examples

• Tutorial

5.10 Simulation Results Class

Solved simulations return the following results class.

SimulationResults Results of a solved simulation of synthetic BLP data.

5.10.1 pyblp.SimulationResults

class pyblp.SimulationResults
Results of a solved simulation of synthetic BLP data.

The SimulationResults.to_problem() method can be used to convert the full set of simulated data
(along with some basic default instruments) and configured information into a Problem. Additionally, this
class has duplicates of the following ProblemResults methods:

• ProblemResults.compute_aggregate_elasticities()

• ProblemResults.compute_elasticities()

• ProblemResults.compute_demand_jacobians()

• ProblemResults.compute_demand_hessians()

• ProblemResults.compute_profit_hessians()

• ProblemResults.compute_diversion_ratios()

• ProblemResults.compute_long_run_diversion_ratios()

• ProblemResults.compute_probabilities()

• ProblemResults.extract_diagonals()

• ProblemResults.extract_diagonal_means()

• ProblemResults.compute_delta()

• ProblemResults.compute_costs()

• ProblemResults.compute_passthrough()

• ProblemResults.compute_approximate_prices()

• ProblemResults.compute_prices()

• ProblemResults.compute_shares()

• ProblemResults.compute_hhi()

• ProblemResults.compute_markups()

• ProblemResults.compute_profits()

• ProblemResults.compute_consumer_surpluses()
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• ProblemResults.compute_micro_values()

• ProblemResults.compute_micro_scores()

• ProblemResults.compute_agent_scores()

• ProblemResults.simulate_micro_data()

simulation
Simulation that created these results.

Type Simulation

product_data
Simulated Simulation.product_data with product characteristics replaced so as to be consistent
with the true parameters. If Simulation.replace_endogenous() was used to create these re-
sults, prices and market shares were replaced. If Simulation.replace_exogenous() was used,
exogenous characteristics were replaced instead. The data_to_dict() function can be used to convert
this into a more usable data type.

Type recarray

delta
Simulated mean utility, 𝛿.

Type ndarray

costs
Simulated marginal costs, 𝑐.

Type ndarray

computation_time
Number of seconds it took to compute prices and market shares.

Type float

fp_converged
Flags for convergence of the iteration routine used to compute prices or 𝛿 (depending on the method
used to create these results) in each market. Flags are in the same order as Simulation.
unique_market_ids.

Type ndarray

fp_iterations
Number of major iterations completed by the iteration routine used to compute prices or 𝛿 in each market.
Counts are in the same order as Simulation.unique_market_ids.

Type ndarray

contraction_evaluations
Number of times the contraction used to compute prices or 𝛿 was evaluated in each market. Counts are in
the same order as Simulation.unique_market_ids.

Type ndarray

profit_gradients
Mapping from market IDs 𝑡 to mappings from firm IDs 𝑓 to profit gradients. This is only computed if
these results were created by Simulation.replace_endogenous(). The profit gradient for firm
𝑓 in market 𝑡 is a 𝐽𝑓𝑡 vector with element 𝑘 ∈ 𝐽𝑓𝑡

𝜕𝜋𝑓𝑡

𝜕𝑝𝑘𝑡
=
∑︁
𝑗∈𝐽𝑓𝑡

𝜕𝜋𝑗𝑡

𝜕𝑝𝑘𝑡
(5.37)
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where population-normalized profits are

𝜋𝑗𝑡 = (𝑝𝑗𝑡 − 𝑐𝑗𝑡)𝑠𝑗𝑡. (5.38)

When there is a nontrivial ownership structure, the sum is over all products 𝑗 ∈ 𝐽𝑡 and the terms are
weighted by the firm’s (possibly partial) ownership of product 𝑗, given by H𝑗𝑘.

Type dict

profit_gradient_norms
Mapping from market IDs 𝑡 to mappings from firm IDs 𝑓 to the infinity norm of profit gradients. This is
only computed if these results were created by Simulation.replace_endogenous(). If a norm
is near to zero, the firm’s choice of profits is near to a local optimum.

Type dict

profit_hessians
Mapping from market IDs 𝑡 to mappings from firm IDs 𝑓 to profit Hessians. This is only computed if
these results were created by Simulation.replace_endogenous(). The profit Hessian for firm 𝑓
in market 𝑡 is a 𝐽𝑓𝑡 × 𝐽𝑓𝑡 matrix with element (𝑘, ℓ) ∈ 𝐽2

𝑓𝑡

𝜕2𝜋𝑓𝑡

𝜕𝑝𝑘𝑡𝜕𝑝ℓ𝑡
=
∑︁
𝑗∈𝐽𝑓𝑡

𝜕2𝜋𝑗𝑡

𝜕𝑝𝑘𝑡𝜕𝑝ℓ𝑡
(5.39)

where population-normalized profits are

𝜋𝑗𝑡 = (𝑝𝑗𝑡 − 𝑐𝑗𝑡)𝑠𝑗𝑡. (5.40)

When there is a nontrivial ownership structure, the sum is over all products 𝑗 ∈ 𝐽𝑡 and the terms are
weighted by the firm’s (possibly partial) ownership of product 𝑗, given by H𝑗𝑘.

Type dict

profit_hessian_eigenvalues
Mapping from market IDs 𝑡 to mappings from firm IDs 𝑓 to the eigenvalues of profit Hessians. This is
only computed if these results were created by Simulation.replace_endogenous(). If the fixed
point converged and all eigenvalues are negative, the firm’s choice of profits is a local maximum.

Type dict

Examples

• Tutorial

This class has many of the same methods as ProblemResults. It can also be pickled or converted into a dictionary.

SimulationResults.to_pickle(path) Save these results as a pickle file.
SimulationResults.to_dict([attributes]) Convert these results into a dictionary that maps at-

tribute names to values.

5.10.2 pyblp.SimulationResults.to_pickle

SimulationResults.to_pickle(path)
Save these results as a pickle file.

Parameters path (str or Path) – File path to which these results will be saved.
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5.10.3 pyblp.SimulationResults.to_dict

SimulationResults.to_dict(attributes=(’product_data’, ’delta’, ’costs’, ’computation_time’,
’fp_converged’, ’fp_iterations’, ’contraction_evaluations’,
’profit_gradients’, ’profit_gradient_norms’, ’profit_hessians’,
’profit_hessian_eigenvalues’))

Convert these results into a dictionary that maps attribute names to values.

Parameters attributes (sequence of str, optional) – Name of attributes that will be added
to the dictionary. By default, all SimulationResults attributes are added except for
SimulationResults.simulation.

Returns Mapping from attribute names to values.

Return type dict

Examples

• Tutorial

It can also be converted into a Problem with the following method.

SimulationResults.to_problem([. . . ]) Convert the solved simulation into a problem.

5.10.4 pyblp.SimulationResults.to_problem

SimulationResults.to_problem(product_formulations=None, product_data=None,
agent_formulation=None, agent_data=None, integration=None,
rc_types=None, epsilon_scale=None, costs_type=None,
add_exogenous=True)

Convert the solved simulation into a problem.

Arguments are the same as those of Problem. By default, the structure of the problem will be the same as that
of the solved simulation.

By default, some simple “sums of characteristics” BLP instruments are constructed. Demand-side instruments
are constructed by build_blp_instruments() from variables in 𝑋𝑒𝑥𝑡𝑒𝑥

1 , along with any supply shifters
(variables in 𝑋𝑒𝑥𝑡𝑒𝑥

3 but not 𝑋𝑒𝑥𝑡𝑒𝑥
1 ). Supply side instruments are constructed from variables in 𝑋𝑒𝑥𝑡𝑒𝑥

3 , along
with any demand shifters (variables in 𝑋𝑒𝑥𝑡𝑒𝑥

1 but not 𝑋𝑒𝑥𝑡𝑒𝑥
3 ). Instruments will also be constructed from

columns of ones if there is variation in 𝐽𝑡, the number of products per market. Any constant columns will be
dropped. For example, if each firm owns exactly one product in each market, the “rival” columns of instruments
will be zero and hence dropped.

Note: These excluded instruments are constructed only for convenience. Especially for more complicated
problems, they should be replaced with better instruments.

Parameters

• product_formulations (Formulation or sequence of Formulation, optional) – By de-
fault, Simulation.product_formulations.

• product_data (structured array-like, optional) – By default, SimulationResults.
product_data with excluded instruments.
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• agent_formulation (Formulation, optional) – By default, Simulation.
agent_formulation.

• agent_data (structured array-like, optional) – By default, Simulation.
agent_data.

• integration (Integration, optional) – By default, this is unspecified.

• rc_types (sequence of str, optional) – By default, Simulation.rc_types.

• epsilon_scale (float, optional) – By default, Simulation.epsilon_scale.

• costs_type (str, optional) – By default, Simulation.costs_type.

• add_exogenous (bool, optional) – By default, True.

Returns A BLP problem.

Return type Problem

Examples

• Tutorial

5.11 Structured Data Classes

Product and agent data that are passed or constructed by Problem and Simulation are structured internally into
classes with field names that more closely resemble BLP notation. Although these structured data classes are not
directly constructable, they can be accessed with Problem and Simulation class attributes. It can be helpful to
compare these structured data classes with the data or configurations used to create them.

Products Product data structured as a record array.
Agents Agent data structured as a record array.

5.11.1 pyblp.Products

class pyblp.Products
Product data structured as a record array.

Attributes in addition to the ones below are the variables underlying 𝑋1, 𝑋2, and 𝑋3.

market_ids
IDs that associate products with markets.

Type ndarray

firm_ids
IDs that associate products with firms.

Type ndarray

demand_ids
IDs used to create demand-side fixed effects.

Type ndarray

supply_ids
IDs used to create supply-side fixed effects.
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Type ndarray

nesting_ids
IDs that associate products with nesting groups.

Type ndarray

product_ids
IDs that identify products within markets.

Type ndarray

clustering_ids
IDs used to compute clustered standard errors.

Type ndarray

ownership
Stacked 𝐽𝑡 × 𝐽𝑡 ownership or product holding matrices, H , for each market 𝑡.

Type ndarray

shares
Market shares, 𝑠.

Type ndarray

prices
Product prices, 𝑝.

Type ndarray

ZD
Full set of demand-side instruments, 𝑍𝐷, which typically consists of excluded demand-side instruments
and 𝑋ex

1 . If there are any demand-side fixed effects, these instruments will be residualized with respect to
these fixed effects.

Type ndarray

ZS
Full set of supply-side instruments, 𝑍𝑆 , which typically consists of excluded supply-side instruments and
𝑋ex

3 . If there are any supply-side fixed effects, these instruments will be residualized with respect to these
fixed effects.

Type ndarray

ZC
Covariance instruments, 𝑍𝐶 , as in MacKay and Miller (2023).

Type ndarray

X1
Demand-side linear product characteristics, 𝑋1. If there are any demand-side fixed effects, these charac-
teristics will be residualized with respect to these fixed effects.

Type ndarray

X2
Demand-side nonlinear product characteristics, 𝑋2.

Type ndarray

X3
Supply-side product characteristics, 𝑋3. If there are any supply-side fixed effects, these characteristics
will be residualized with respect to these fixed effects.
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Type ndarray

5.11.2 pyblp.Agents

class pyblp.Agents
Agent data structured as a record array.

market_ids
IDs that associate agents with markets.

Type ndarray

agent_ids
IDs that identify agents within markets.

Type ndarray

weights
Integration weights, 𝑤.

Type ndarray

nodes
Unobserved agent characteristics called integration nodes, 𝜈.

Type ndarray

demographics
Observed agent characteristics, 𝑑.

Type ndarray

availability
Agent-specific product availability, 𝑎.

Type ndarray

5.12 Multiprocessing

A context manager can be used to enable parallel processing for methods that perform market-by-market computation.

parallel(processes[, use_pathos]) Context manager used for parallel processing in a with
statement context.

5.12.1 pyblp.parallel

pyblp.parallel(processes, use_pathos=False)
Context manager used for parallel processing in a with statement context.

This manager creates a context in which a pool of Python processes will be used by any method that requires
market-by-market computation. These methods will distribute their work among the processes. After the context
created by the with statement ends, all worker processes in the pool will be terminated. Outside this context,
such methods will not use multiprocessing.

Importantly, multiprocessing will only improve speed if gains from parallelization outweigh overhead from
serializing and passing data between processes. For example, if computation for a single market is very fast and
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there is a lot of data in each market that must be serialized and passed between processes, using multiprocessing
may reduce overall speed.

Parameters

• processes (int) – Number of Python processes that will be created and used by any
method that supports parallel processing.

• use_pathos (bool, optional) – Whether to use pathos (which will need to be installed)
instead of the default, built-in multiprocessing module. Since pathos uses dill to
pickle and pass objects between processes, it can support more objects than the default
multiprocessing module, which uses the default pickle module. However, dill can be much
slower, so using pathos can further increase overhead of passing data between processes.

Examples
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The online version of the following section may be easier to read.

Parallel Processing Example

[1]: import pyblp
import pandas as pd

pyblp.options.digits = 2
pyblp.options.verbose = False
pyblp.__version__

[1]: '1.1.0'

In this example, we’ll use parallel processing to compute elasticities market-by-market for a simple Logit problem
configured with some of the fake cereal data from Nevo (2000a).

[2]: product_data = pd.read_csv(pyblp.data.NEVO_PRODUCTS_LOCATION)
formulation = pyblp.Formulation('0 + prices', absorb='C(product_ids)')
problem = pyblp.Problem(formulation, product_data)
results = problem.solve()
results

[2]: Problem Results Summary:
==========================================
GMM Objective Clipped Weighting Matrix
Step Value Shares Condition Number
---- --------- ------- ----------------
2 +1.9E+02 0 +5.7E+07

==========================================

Cumulative Statistics:
========================
Computation Objective

Time Evaluations
----------- -----------
00:00:00 2

========================

Beta Estimates (Robust SEs in Parentheses):

(continues on next page)
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(continued from previous page)

==========
prices

----------
-3.0E+01

(+1.0E+00)
==========

[3]: pyblp.options.verbose = True
with pyblp.parallel(2):

elasticities = results.compute_elasticities()

Starting a pool of 2 processes ...
Started the process pool after 00:00:00.
Computing elasticities with respect to prices ...
Finished after 00:00:03.

Terminating the pool of 2 processes ...
Terminated the process pool after 00:00:00.

Solving a Logit problem does not require market-by-market computation, so parallelization does not change its
estimation procedure. Although elasticity computation does happen market-by-market, this problem is very small,
so in this small example there are no gains from parallelization.

If the problem were much larger, running Problem.solve and ProblemResults.compute_elasticities under the with
statement could substantially speed up estimation and elasticity computation.

5.12.
M
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5.13 Options and Example Data

In addition to classes and functions, there are also two modules that can be used to configure global package options
and locate example data that comes with the package.

options Global options.
data Locations of example data that are included in the pack-

age for convenience.

5.13.1 pyblp.options

Global options.

pyblp.options.digits
Number of digits displayed by status updates. The default number of digits is 7. The number of digits can be
changed to, for example, 2, with pyblp.options.digits = 2.

Type int

pyblp.options.verbose
Whether to output status updates. By default, verbosity is turned on. Verbosity can be turned off with pyblp.
options.verbose = False.

Type bool

pyblp.options.verbose_tracebacks
Whether to include full tracebacks in error messages. By default, full tracebacks are turned off. These can
be useful when attempting to find the source of an error message. Tracebacks can be turned on with pyblp.
options.verbose_tracebacks = True.

Type bool

pyblp.options.verbose_output
Function used to output status updates. The default function is simply print. The function can be changed,
for example, to include an indicator that statuses are from this package, with pyblp.verbose_output =
lambda x: print(f"pyblp: {x}").

Type callable

pyblp.options.flush_output
Whether to call sys.stdout.flush() after outputting a status update. By default, output is not flushed
to standard output. To force standard output flushes after every status update, set pyblp.options.
flush_output = True. This may be particularly desirable for R users who are calling PyBLP from retic-
ulate, since standard output is typically not automatically flushed to the screen in this environment. If PyBLP is
imported as pyblp, this setting can be enabled in R with pyblp$options$flush_output <- TRUE.

Type bool

pyblp.options.dtype
The data type used for internal calculations, which is by default numpy.float64. The other recommended
option is numpy.longdouble, which is the only extended precision floating point type currently supported
by NumPy. Although this data type will be used internally, numpy.float64 will be used when passing arrays
to optimization and fixed point routines, which may not support extended precision. The library underlying
scipy.linalg, which is used for matrix inversion, may also use numpy.float64.

One instance in which extended precision can be helpful in the BLP problem is when there are a large number of
near zero choice probabilities with small integration weights, which, under standard precision are called zeros
when in aggregate they are nonzero.
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The precision of numpy.longdouble depends on the platform on which NumPy is installed. If the plat-
form in use does not support extended precision, using numpy.longdouble may lead to unreliable results.
For example, on Windows, NumPy is usually compiled such that numpy.longdouble often behaves like
numpy.float64. Precisions can be compared with numpy.finfo by running numpy.finfo(numpy.
float64) and numpy.finfo(numpy.longdouble). For more information, refer to this discussion.

If extended precisions is supported, the data type can be switched with pyblp.options.dtype =
numpy.longdouble. On Windows, it is often easier to install Linux in a virtual machine than it is to build
NumPy from source with a non-standard compiler.

Type dtype

pyblp.options.finite_differences_epsilon
Perturbation 𝜖 used to numerically approximate derivatives with central finite differences:

𝑓 ′(𝑥) =
𝑓(𝑥+ 𝜖/2)− 𝑓(𝑥− 𝜖/2)

𝜖
. (5.41)

By default, this is the square root of the machine epsilon: numpy.sqrt(numpy.finfo(options.
dtype).eps). The typical example where this is used is when computing the Hessian, but it may also
be used to compute Jacobians required for standard errors when analytic gradients are disabled.

Type float

pyblp.options.pseudo_inverses
Whether to compute Moore-Penrose pseudo-inverses of matrices with scipy.linalg.pinv() instead of
their classic inverses with scipy.linalg.inv(). This is by default True, so pseudo-inverses will be used.
Up to small numerical differences, the pseudo-inverse is identical to the classic inverse for invertible matrices.
Using the pseudo-inverse by default can help alleviate problems from, for example, near-singular weighting
matrices.

To always attempt to compute classic inverses first, set pyblp.options.pseudo_inverses = False.
If a classic inverse cannot be computed, an error will be displayed, and a pseudo-inverse may be computed
instead.

Type bool

pyblp.options.weights_tol
Tolerance for detecting integration weights that do not sum to one, which is by default 1e-10. In most setups
weights should essentially sum to one, but for example with importance sampling they may be slightly different.
Warnings can be disabled by setting this to numpy.inf.

Type float

pyblp.options.singular_tol
Tolerance for detecting singular matrices, which is by default 1 / numpy.finfo(options.dtype).
eps. If a matrix has a condition number larger than this tolerance, a warning will be displayed. To disable
singularity checks, set pyblp.options.singular_tol = numpy.inf.

Type float

pyblp.options.collinear_atol
Absolute tolerance for detecting collinear columns in each matrix of product characteristics and instruments:
𝑋1, 𝑋2, 𝑋3, 𝑍𝐷, and 𝑍𝑆 . Micro moments can also be checked; see detect_micro_collinearity.

Each matrix is decomposed into a 𝑄𝑅 decomposition and an error is raised for any column whose diagonal
element in 𝑅 has a magnitude less than collinear_atol + collinear_rtol * sd where sd is the
column’s standard deviation.

The default absolute tolerance is 1e-10. To disable collinearity checks, set pyblp.options.
collinear_atol = pyblp.options.collinear_rtol = 0.
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Type float

pyblp.options.collinear_rtol
Relative tolerance for detecting collinear columns, which is by default also 1e-10.

Type float

pyblp.options.psd_atol
Absolute tolerance for detecting non-positive semidefinite matrices. For example, this check is applied to any
custom weighting matrix, 𝑊 .

Singular value decomposition factorizes the matrix into 𝑈Σ𝑉 and an error is raised if any element in the original
matrix differs in absolute value from 𝑉 ′Σ𝑉 by more than psd_atol + psd_rtol * abs where abs is
the element’s absolute value.

The default tolerance is 1e-8. To disable positive semidefinite checks, set pyblp.options.psd_atol =
pyblp.options.psd_rtol = numpy.inf.

Type float

pyblp.options.psd_rtol
Relative tolerance for detecting non-positive definite matrices, which is by default also 1e-8.

Type float

pyblp.options.detect_micro_collinearity
Whether to check if micro values 𝑣𝑝𝑖𝑗𝑡 (or 𝑣𝑝𝑖𝑗𝑘𝑡 with second choices) are collinear with one another by comput-
ing these values once, stacking them, and using pyblp.options.collinear_atol` and ``pyblp.
options.collinear_rtol.

By default, micro values are not checked for collinearity because this procedure can require a large amount of
memory. To enable this check, set pyblp.options.detect_micro_collinearity = True. If this
uses a large amount of memory, one option is to temporarily reduce the number of markets, observations, or
agents to cut down on memory while debugging one’s code to see which micro moments are collinear with one
another.

Type bool

pyblp.options.micro_computation_chunks
How finely to break up micro moment computation within market. Computation is broken up by groups of
agents within market. This can help reduce the amount of memory being used by micro moments when there
are a large number of agents and products, and especially when second choice micro moments are being used.

By default, micro moment computation is done in one chunk for each market. To reduce memory usage with-
out changing any estimation results, for example by splitting up computation into 10 chunks, use pyblp.
options.micro_computation_chunks = 10.

If a dictionary, this should map market IDs to the number of chunks to use. For example, to only chunk
computation in market ID 'big market', use pyblp.options.micro_computation_chunks =
{'big_market': 10}.

Type int or dict

pyblp.options.drop_product_fields
Whether to conserve memory by dropping product data fields that are not needed for market-level compu-
tation when initializing a market. By default, these fields are not dropped. Setting pyblp.options.
drop_product_fields = True may reduce memory usage, especially if there are many instruments,
at the cost of extra time needed to drop these fields.

Type bool
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5.13.2 pyblp.data

Locations of example data that are included in the package for convenience.

pyblp.data.NEVO_PRODUCTS_LOCATION
Location of a CSV file containing the fake cereal product data from Nevo (2000a). The file includes the same
pre-computed excluded instruments used in the original paper. The data are from Aviv Nevo’s Matlab code,
which was archived on Eric Rasmusen’s website.

Type str

pyblp.data.NEVO_AGENTS_LOCATION
Location of a CSV file containing the agent data from Nevo (2000a). Included in the file are Monte Carlo
weights and draws along with demographics from the original paper. The data are from Aviv Nevo’s Matlab
code, which was archived on Eric Rasmusen’s website.

Type str

pyblp.data.BLP_PRODUCTS_LOCATION
Location of a CSV file containing the automobile product data extracted by Andrews, Gentzkow, and Shapiro
(2017) from the original GAUSS code for Berry, Levinsohn, and Pakes (1999), which is commonly assumed to
be the same data used in Berry, Levinsohn, and Pakes (1995).

The file also includes a set of excluded instruments. First, “sums of characteristics” BLP instruments from the
original paper were computed with build_blp_instruments(). The examples section in the documenta-
tion for this function shows how to construct these instruments from scratch. As in the original paper, the “rival”
instrument constructed from the trend variable was excluded due to collinearity issues, and the mpd variable
was added to the set of excluded instruments for supply.

Type str

pyblp.data.BLP_AGENTS_LOCATION
Location of a CSV file containing the agent data from Berry, Levinsohn, and Pakes (1999). Included in the file
are the importance sampling weights and draws along with the income demographic from the original paper.
These data are also from the replication code of Andrews, Gentzkow, and Shapiro (2017).

Type str

pyblp.data.PETRIN_PRODUCTS_LOCATION
Location of a CSV file containing the automobile product data from Petrin (2002). The file includes the same
pre-computed excluded instruments used in the original paper. The data are from Amil Petrin’s GAUSS code,
available on his website.

Type str

pyblp.data.PETRIN_AGENTS_LOCATION
Location of a CSV file containing agent data similar to that used by Petrin (2002). The file includes 1,000
scrambled Halton draws in each market, along with demographics resampled from the Consumer Expenditure
Survey (CEX) used by the original paper. The original paper used pseudo Monte Carlo draws and importance
sampling. The demographics that were resampled are from Amil Petrin’s GAUSS code, available on his website.

Type str

pyblp.data.PETRIN_VALUES_LOCATION
Location of a CSV file containing micro moment values matched by Petrin (2002). These are the rounded values
reported in Table 6a of the working paper version of the original paper.

Type str

pyblp.data.PETRIN_COVARIANCES_LOCATION
Location of a CSV file containing micro moment sample covariances used by Petrin (2002). The data are from
Amil Petrin’s GAUSS code, available on his website.
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Type str

Examples
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The online version of the following section may be easier to read.

Loading Data Example

[1]: import pyblp

pyblp.__version__

[1]: '1.1.0'

Any number of functions can be used to load the example data into memory. In this example, we’ll first use NumPy.

[2]: import numpy as np
blp_product_data = np.recfromcsv(pyblp.data.BLP_PRODUCTS_LOCATION, encoding='utf-8')
blp_agent_data = np.recfromcsv(pyblp.data.BLP_AGENTS_LOCATION, encoding='utf-8')

Record arrays can be cumbersome to manipulate. A more flexible alternative is the pandas DataFrame. Unlike NumPy, pyblp does not directly depend on pandas,
but it can be useful when manipulating data.

[3]: import pandas as pd
blp_product_data = pd.read_csv(pyblp.data.BLP_PRODUCTS_LOCATION)
blp_agent_data = pd.read_csv(pyblp.data.BLP_AGENTS_LOCATION)

Another benefit of DataFrame objects is that they display nicely in Jupyter notebooks.

[4]: blp_product_data.head()

[4]: market_ids clustering_ids car_ids firm_ids region shares prices \
0 1971 AMGREM71 129 15 US 0.001051 4.935802
1 1971 AMHORN71 130 15 US 0.000670 5.516049
2 1971 AMJAVL71 132 15 US 0.000341 7.108642
3 1971 AMMATA71 134 15 US 0.000522 6.839506
4 1971 AMAMBS71 136 15 US 0.000442 8.928395

hpwt air mpd ... supply_instruments2 supply_instruments3 \
0 0.528997 0 1.888146 ... 0.0 1.705933
1 0.494324 0 1.935989 ... 0.0 1.680910
2 0.467613 0 1.716799 ... 0.0 1.801067
3 0.426540 0 1.687871 ... 0.0 1.818061

(continues on next page)
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(continued from previous page)

4 0.452489 0 1.504286 ... 0.0 1.933210

supply_instruments4 supply_instruments5 supply_instruments6 \
0 1.595656 87.0 -61.959985
1 1.490295 87.0 -61.959985
2 1.357703 87.0 -61.959985
3 1.261347 87.0 -61.959985
4 1.237365 87.0 -61.959985

supply_instruments7 supply_instruments8 supply_instruments9 \
0 0.0 46.060389 29.786989
1 0.0 46.060389 29.786989
2 0.0 46.060389 29.786989
3 0.0 46.060389 29.786989
4 0.0 46.060389 29.786989

supply_instruments10 supply_instruments11
0 0.0 1.888146
1 0.0 1.935989
2 0.0 1.716799
3 0.0 1.687871
4 0.0 1.504286

[5 rows x 33 columns]

[5]: blp_agent_data.head()

[5]: market_ids weights nodes0 nodes1 nodes2 nodes3 nodes4 \
0 1971 0.000543 1.192188 0.478777 0.980830 -0.824410 2.473301
1 1971 0.000723 1.497074 -2.026204 -1.741316 1.412568 -0.747468
2 1971 0.000544 1.438081 0.813280 -1.749974 -1.203509 0.049558
3 1971 0.000701 1.768655 -0.177453 0.286602 0.391517 0.683669
4 1971 0.000549 0.849970 -0.135337 0.735920 1.036247 -1.143436

income
0 109.560369
1 45.457314
2 127.146548
3 22.604045
4 170.226032

242
C

hapter
5.

A
P

ID
ocum

entation



P
yB

LP,R
elease

1.1.0

This tutorial demonstrates how the instruments included in this dataset can be constructed from scratch.
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5.14 Exceptions

When errors occur, they will either be displayed as warnings or raised as exceptions.

exceptions.MultipleErrors Multiple errors that occurred around the same time.
exceptions.NonpositiveCostsError Encountered nonpositive marginal costs in a log-linear

specification.
exceptions.NonpositiveSyntheticCostsErrorEncountered nonpositive synthetic marginal costs in a

log-linear specification.
exceptions.InvalidParameterCovariancesErrorFailed to compute standard errors because of invalid es-

timated covariances of GMM parameters.
exceptions.InvalidMomentCovariancesErrorFailed to compute a weighting matrix because of invalid

estimated covariances of GMM moments.
exceptions.GenericNumericalError Encountered a numerical error.
exceptions.DeltaNumericalError Encountered a numerical error when computing 𝛿.
exceptions.CostsNumericalError Encountered a numerical error when computing

marginal costs.
exceptions.MicroMomentsNumericalError Encountered a numerical error when computing micro

moments.
exceptions.XiByThetaJacobianNumericalErrorEncountered a numerical error when computing the Ja-

cobian (holding 𝛽 fixed) of 𝜉 (equivalently, of 𝛿) with
respect to 𝜃.

exceptions.OmegaByThetaJacobianNumericalErrorEncountered a numerical error when computing the Ja-
cobian (holding 𝛾 fixed) of 𝜔 (equivalently, of trans-
formed marginal costs) with respect to 𝜃.

exceptions.MicroMomentsByThetaJacobianNumericalErrorEncountered a numerical error when computing the Ja-
cobian of micro moments with respect to 𝜃.

exceptions.MicroMomentCovariancesNumericalErrorEncountered a numerical error when computing micro
moment covariances.

exceptions.SyntheticPricesNumericalErrorEncountered a numerical error when computing syn-
thetic prices.

exceptions.SyntheticSharesNumericalErrorEncountered a numerical error when computing syn-
thetic shares.

exceptions.SyntheticDeltaNumericalErrorEncountered a numerical error when computing the syn-
thetic 𝛿.

exceptions.SyntheticCostsNumericalErrorEncountered a numerical error when computing syn-
thetic marginal costs.

exceptions.SyntheticMicroDataNumericalErrorEncountered a numerical error when computing syn-
thetic micro data.

exceptions.SyntheticMicroMomentsNumericalErrorEncountered a numerical error when computing syn-
thetic micro moments.

exceptions.MicroScoresNumericalError Encountered a numerical error when computing micro
scores.

exceptions.EquilibriumRealizationNumericalErrorEncountered a numerical error when solving for a real-
ization of equilibrium prices and shares.

exceptions.JacobianRealizationNumericalErrorEncountered a numerical error when computing a real-
ization of the Jacobian (holding 𝛽 fixed) of 𝜉 (equiva-
lently, of 𝛿) or 𝜔 (equivalently, of transformed marginal
costs) with respect to 𝜃.

exceptions.PostEstimationNumericalErrorEncountered a numerical error when computing a post-
estimation output.

Continued on next page
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Table 43 – continued from previous page
exceptions.AbsorptionError A fixed effect absorption procedure failed to properly

absorb fixed effects.
exceptions.ClippedSharesError Shares were clipped during the final iteration of the

fixed point routine for computing 𝛿.
exceptions.ThetaConvergenceError The optimization routine failed to converge.
exceptions.DeltaConvergenceError The fixed point computation of 𝛿 failed to converge.
exceptions.SyntheticPricesConvergenceErrorThe fixed point computation of synthetic prices failed to

converge.
exceptions.SyntheticDeltaConvergenceErrorThe fixed point computation of the synthetic 𝛿 failed to

converge.
exceptions.EquilibriumPricesConvergenceErrorThe fixed point computation of equilibrium prices failed

to converge.
exceptions.ObjectiveReversionError Reverted a problematic GMM objective value.
exceptions.GradientReversionError Reverted problematic elements in the GMM objective

gradient.
exceptions.DeltaReversionError Reverted problematic elements in 𝛿.
exceptions.CostsReversionError Reverted problematic marginal costs.
exceptions.MicroMomentsReversionError Reverted problematic micro moments.
exceptions.XiByThetaJacobianReversionErrorReverted problematic elements in the Jacobian (holding

𝛽 fixed) of 𝜉 (equivalently, of 𝛿) with respect to 𝜃.
exceptions.OmegaByThetaJacobianReversionErrorReverted problematic elements in the Jacobian (hold-

ing 𝛾 fixed) of 𝜔 (equivalently, of transformed marginal
costs) with respect to 𝜃.

exceptions.MicroMomentsByThetaJacobianReversionErrorReverted problematic elements in the Jacobian of micro
moments with respect to 𝜃.

exceptions.HessianEigenvaluesError Failed to compute eigenvalues for the GMM objective’s
(reduced) Hessian matrix.

exceptions.ProfitHessianEigenvaluesErrorFailed to compute eigenvalues for a firm’s profit Hes-
sian.

exceptions.FittedValuesInversionError Failed to invert an estimated covariance when comput-
ing fitted values.

exceptions.SharesByXiJacobianInversionErrorFailed to invert a Jacobian of shares with respect to 𝜉
when computing the Jacobian (holding 𝛽 fixed) of 𝜉
(equivalently, of 𝛿) with respect to 𝜃.

exceptions.IntraFirmJacobianInversionErrorFailed to invert an intra-firm Jacobian of shares with re-
spect to prices.

exceptions.PassthroughInversionError Failed to invert the matrix to recover the passthrough
matrix.

exceptions.LinearParameterCovariancesInversionErrorFailed to invert an estimated covariance matrix of linear
parameters.

exceptions.GMMParameterCovariancesInversionErrorFailed to invert an estimated covariance matrix of GMM
parameters.

exceptions.GMMMomentCovariancesInversionErrorFailed to invert an estimated covariance matrix of GMM
moments.

5.14.1 pyblp.exceptions.MultipleErrors

class pyblp.exceptions.MultipleErrors
Multiple errors that occurred around the same time.
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5.14.2 pyblp.exceptions.NonpositiveCostsError

class pyblp.exceptions.NonpositiveCostsError
Encountered nonpositive marginal costs in a log-linear specification.

This problem can sometimes be mitigated by bounding costs from below, choosing more reasonable initial
parameter values, setting more conservative parameter bounds, or using a linear costs specification.

5.14.3 pyblp.exceptions.NonpositiveSyntheticCostsError

class pyblp.exceptions.NonpositiveSyntheticCostsError
Encountered nonpositive synthetic marginal costs in a log-linear specification.

This problem can sometimes be mitigated by more reasonable initial parameter values or using a linear costs
specification.

5.14.4 pyblp.exceptions.InvalidParameterCovariancesError

class pyblp.exceptions.InvalidParameterCovariancesError
Failed to compute standard errors because of invalid estimated covariances of GMM parameters.

5.14.5 pyblp.exceptions.InvalidMomentCovariancesError

class pyblp.exceptions.InvalidMomentCovariancesError
Failed to compute a weighting matrix because of invalid estimated covariances of GMM moments.

5.14.6 pyblp.exceptions.GenericNumericalError

class pyblp.exceptions.GenericNumericalError
Encountered a numerical error.

5.14.7 pyblp.exceptions.DeltaNumericalError

class pyblp.exceptions.DeltaNumericalError
Encountered a numerical error when computing 𝛿.

This problem is often due to prior problems, overflow, or nonpositive shares, and can sometimes be mitigated
by choosing smaller initial parameter values, setting more conservative bounds on parameters or shares, rescal-
ing data, removing outliers, changing the floating point precision, or using different optimization, iteration, or
integration configurations.

5.14.8 pyblp.exceptions.CostsNumericalError

class pyblp.exceptions.CostsNumericalError
Encountered a numerical error when computing marginal costs.

This problem is often due to prior problems or overflow and can sometimes be mitigated by choosing smaller ini-
tial parameter values, setting more conservative bounds, rescaling data, removing outliers, changing the floating
point precision, or using different optimization or cost configurations.
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5.14.9 pyblp.exceptions.MicroMomentsNumericalError

class pyblp.exceptions.MicroMomentsNumericalError
Encountered a numerical error when computing micro moments.

This problem is often due to prior problems, overflow, or nonpositive shares, and can sometimes be mitigated by
choosing smaller initial parameter values, setting more conservative bounds, rescaling data, removing outliers,
changing the floating point precision, or using different optimization, iteration, or integration configurations.

5.14.10 pyblp.exceptions.XiByThetaJacobianNumericalError

class pyblp.exceptions.XiByThetaJacobianNumericalError
Encountered a numerical error when computing the Jacobian (holding 𝛽 fixed) of 𝜉 (equivalently, of 𝛿) with
respect to 𝜃.

This problem is often due to prior problems, overflow, or nonpositive shares, and can sometimes be mitigated by
choosing smaller initial parameter values, setting more conservative bounds, rescaling data, removing outliers,
changing the floating point precision, or using different optimization, iteration, or integration configurations.

5.14.11 pyblp.exceptions.OmegaByThetaJacobianNumericalError

class pyblp.exceptions.OmegaByThetaJacobianNumericalError
Encountered a numerical error when computing the Jacobian (holding 𝛾 fixed) of 𝜔 (equivalently, of transformed
marginal costs) with respect to 𝜃.

This problem is often due to prior problems or overflow, and can sometimes be mitigated by choosing smaller
initial parameter values, setting more conservative bounds, rescaling data, removing outliers, changing the float-
ing point precision, or using different optimization or cost configurations.

5.14.12 pyblp.exceptions.MicroMomentsByThetaJacobianNumericalError

class pyblp.exceptions.MicroMomentsByThetaJacobianNumericalError
Encountered a numerical error when computing the Jacobian of micro moments with respect to 𝜃.

5.14.13 pyblp.exceptions.MicroMomentCovariancesNumericalError

class pyblp.exceptions.MicroMomentCovariancesNumericalError
Encountered a numerical error when computing micro moment covariances.

5.14.14 pyblp.exceptions.SyntheticPricesNumericalError

class pyblp.exceptions.SyntheticPricesNumericalError
Encountered a numerical error when computing synthetic prices.

This problem is often due to prior problems or overflow and can sometimes be mitigated by making sure that the
specified parameters are reasonable. For example, the parameters on prices should generally imply a downward
sloping demand curve.
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5.14.15 pyblp.exceptions.SyntheticSharesNumericalError

class pyblp.exceptions.SyntheticSharesNumericalError
Encountered a numerical error when computing synthetic shares.

This problem is often due to prior problems or overflow and can sometimes be mitigated by making sure that the
specified parameters are reasonable. For example, the parameters on prices should generally imply a downward
sloping demand curve.

5.14.16 pyblp.exceptions.SyntheticDeltaNumericalError

class pyblp.exceptions.SyntheticDeltaNumericalError
Encountered a numerical error when computing the synthetic 𝛿.

This problem is often due to prior problems, overflow, or nonpositive shares, and can sometimes be mitigated
by making sure that the specified parameters are reasonable.

5.14.17 pyblp.exceptions.SyntheticCostsNumericalError

class pyblp.exceptions.SyntheticCostsNumericalError
Encountered a numerical error when computing synthetic marginal costs.

This problem is often due to prior problems or overflow and can sometimes be mitigated by making sure that
the specified parameters are reasonable.

5.14.18 pyblp.exceptions.SyntheticMicroDataNumericalError

class pyblp.exceptions.SyntheticMicroDataNumericalError
Encountered a numerical error when computing synthetic micro data.

5.14.19 pyblp.exceptions.SyntheticMicroMomentsNumericalError

class pyblp.exceptions.SyntheticMicroMomentsNumericalError
Encountered a numerical error when computing synthetic micro moments.

5.14.20 pyblp.exceptions.MicroScoresNumericalError

class pyblp.exceptions.MicroScoresNumericalError
Encountered a numerical error when computing micro scores.

5.14.21 pyblp.exceptions.EquilibriumRealizationNumericalError

class pyblp.exceptions.EquilibriumRealizationNumericalError
Encountered a numerical error when solving for a realization of equilibrium prices and shares.

5.14.22 pyblp.exceptions.JacobianRealizationNumericalError

class pyblp.exceptions.JacobianRealizationNumericalError
Encountered a numerical error when computing a realization of the Jacobian (holding 𝛽 fixed) of 𝜉 (equivalently,
of 𝛿) or 𝜔 (equivalently, of transformed marginal costs) with respect to 𝜃.
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5.14.23 pyblp.exceptions.PostEstimationNumericalError

class pyblp.exceptions.PostEstimationNumericalError
Encountered a numerical error when computing a post-estimation output.

5.14.24 pyblp.exceptions.AbsorptionError

class pyblp.exceptions.AbsorptionError
A fixed effect absorption procedure failed to properly absorb fixed effects.

Consider configuring absorption options or choosing a different absorption method. For information about
absorption options and defaults, refer to the PyHDFE package’s documentation.

5.14.25 pyblp.exceptions.ClippedSharesError

class pyblp.exceptions.ClippedSharesError
Shares were clipped during the final iteration of the fixed point routine for computing 𝛿.

5.14.26 pyblp.exceptions.ThetaConvergenceError

class pyblp.exceptions.ThetaConvergenceError
The optimization routine failed to converge.

This problem can sometimes be mitigated by choosing more reasonable initial parameter values, setting more
conservative bounds, or configuring other optimization settings.

5.14.27 pyblp.exceptions.DeltaConvergenceError

class pyblp.exceptions.DeltaConvergenceError
The fixed point computation of 𝛿 failed to converge.

This problem can sometimes be mitigated by increasing the maximum number of fixed point iterations, in-
creasing the fixed point tolerance, choosing more reasonable initial parameter values, setting more conservative
parameter or share bounds, or using different iteration or optimization configurations.

5.14.28 pyblp.exceptions.SyntheticPricesConvergenceError

class pyblp.exceptions.SyntheticPricesConvergenceError
The fixed point computation of synthetic prices failed to converge.

This problem can sometimes be mitigated by increasing the maximum number of fixed point iterations, increas-
ing the fixed point tolerance, configuring other iteration settings, or making sure the specified parameters are
reasonable. For example, the parameters on prices should generally imply a downward sloping demand curve.

5.14.29 pyblp.exceptions.SyntheticDeltaConvergenceError

class pyblp.exceptions.SyntheticDeltaConvergenceError
The fixed point computation of the synthetic 𝛿 failed to converge.
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This problem can sometimes be mitigated by increasing the maximum number of fixed point iterations, in-
creasing the fixed point tolerance, choosing more reasonable parameter values, or using a different iteration
configuration.

5.14.30 pyblp.exceptions.EquilibriumPricesConvergenceError

class pyblp.exceptions.EquilibriumPricesConvergenceError
The fixed point computation of equilibrium prices failed to converge.

This problem can sometimes be mitigated by increasing the maximum number of fixed point iterations, increas-
ing the fixed point tolerance, or configuring other iteration settings.

5.14.31 pyblp.exceptions.ObjectiveReversionError

class pyblp.exceptions.ObjectiveReversionError
Reverted a problematic GMM objective value.

5.14.32 pyblp.exceptions.GradientReversionError

class pyblp.exceptions.GradientReversionError
Reverted problematic elements in the GMM objective gradient.

5.14.33 pyblp.exceptions.DeltaReversionError

class pyblp.exceptions.DeltaReversionError
Reverted problematic elements in 𝛿.

5.14.34 pyblp.exceptions.CostsReversionError

class pyblp.exceptions.CostsReversionError
Reverted problematic marginal costs.

5.14.35 pyblp.exceptions.MicroMomentsReversionError

class pyblp.exceptions.MicroMomentsReversionError
Reverted problematic micro moments.

5.14.36 pyblp.exceptions.XiByThetaJacobianReversionError

class pyblp.exceptions.XiByThetaJacobianReversionError
Reverted problematic elements in the Jacobian (holding 𝛽 fixed) of 𝜉 (equivalently, of 𝛿) with respect to 𝜃.

5.14.37 pyblp.exceptions.OmegaByThetaJacobianReversionError

class pyblp.exceptions.OmegaByThetaJacobianReversionError
Reverted problematic elements in the Jacobian (holding 𝛾 fixed) of 𝜔 (equivalently, of transformed marginal
costs) with respect to 𝜃.
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5.14.38 pyblp.exceptions.MicroMomentsByThetaJacobianReversionError

class pyblp.exceptions.MicroMomentsByThetaJacobianReversionError
Reverted problematic elements in the Jacobian of micro moments with respect to 𝜃.

5.14.39 pyblp.exceptions.HessianEigenvaluesError

class pyblp.exceptions.HessianEigenvaluesError
Failed to compute eigenvalues for the GMM objective’s (reduced) Hessian matrix.

5.14.40 pyblp.exceptions.ProfitHessianEigenvaluesError

class pyblp.exceptions.ProfitHessianEigenvaluesError
Failed to compute eigenvalues for a firm’s profit Hessian.

5.14.41 pyblp.exceptions.FittedValuesInversionError

class pyblp.exceptions.FittedValuesInversionError
Failed to invert an estimated covariance when computing fitted values.

There are probably collinearity issues.

5.14.42 pyblp.exceptions.SharesByXiJacobianInversionError

class pyblp.exceptions.SharesByXiJacobianInversionError
Failed to invert a Jacobian of shares with respect to 𝜉 when computing the Jacobian (holding 𝛽 fixed) of 𝜉
(equivalently, of 𝛿) with respect to 𝜃.

5.14.43 pyblp.exceptions.IntraFirmJacobianInversionError

class pyblp.exceptions.IntraFirmJacobianInversionError
Failed to invert an intra-firm Jacobian of shares with respect to prices.

5.14.44 pyblp.exceptions.PassthroughInversionError

class pyblp.exceptions.PassthroughInversionError
Failed to invert the matrix to recover the passthrough matrix.

5.14.45 pyblp.exceptions.LinearParameterCovariancesInversionError

class pyblp.exceptions.LinearParameterCovariancesInversionError
Failed to invert an estimated covariance matrix of linear parameters.

One or more data matrices may be highly collinear.
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5.14.46 pyblp.exceptions.GMMParameterCovariancesInversionError

class pyblp.exceptions.GMMParameterCovariancesInversionError
Failed to invert an estimated covariance matrix of GMM parameters.

One or more data matrices may be highly collinear.

5.14.47 pyblp.exceptions.GMMMomentCovariancesInversionError

class pyblp.exceptions.GMMMomentCovariancesInversionError
Failed to invert an estimated covariance matrix of GMM moments.

One or more data matrices may be highly collinear.
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CHAPTER

SIX

REFERENCES

This page contains a full list of references cited in the documentation, including the original work of Berry, Levinsohn,
and Pakes (1995). If you use PyBLP in your research, we ask that you also cite the below Conlon and Gortmaker
(2020), which describes the advances implemented in the package. If you use PyBLP’s micro moments functionality,
we ask that you also cite Conlon and Gortmaker (2023), which describes the standardized framework implemented by
PyBLP for incorporating micro data into BLP-style estimation.

6.1 Conlon and Gortmaker (2020)

Conlon, Christopher, and Jeff Gortmaker (2020). Best practices for differentiated products demand estimation with
PyBLP. RAND Journal of Economics, 51 (4), 1108-1161.

6.2 Conlon and Gortmaker (2023)

Conlon, Christopher, and Jeff Gortmaker (2023). Incorporating micro data into differentiated products demand esti-
mation with PyBLP. Working paper.

6.3 Other References

6.3.1 Amemiya (1977)

Amemiya, Takeshi (1977). A note on a heteroscedastic model. Journal of Econometrics, 6 (3), 365-370.

6.3.2 Andrews, Gentzkow, and Shapiro (2017)

Andrews, Isaiah, Matthew Gentzkow, and Jesse M. Shapiro (2017). Measuring the sensitivity of parameter estimates
to estimation moments. Quarterly Journal of Economics, 132 (4), 1553-1592.

6.3.3 Armstrong (2016)

Armstrong, Timothy B. (2016). Large market asymptotics for differentiated product demand estimators with economic
models of supply. Econometrica, 84 (5), 1961-1980.
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6.3.4 Berry (1994)

Berry, Steven (1994). Estimating discrete-choice models of product differentiation. RAND Journal of Economics, 25
(2), 242-262.

6.3.5 Berry, Levinsohn, and Pakes (1995)

Berry, Steven, James Levinsohn, and Ariel Pakes (1995). Automobile prices in market equilibrium. Econometrica, 63
(4), 841-890.

6.3.6 Berry, Levinsohn, and Pakes (1999)

Berry, Steven, James Levinsohn, and Ariel Pakes (1999). Voluntary export restraints on automobiles: Evaluating a
trade policy. American Economic Review, 83 (9), 400-430.

6.3.7 Berry, Levinsohn, and Pakes (2004)

Berry, Steven, James Levinsohn, and Ariel Pakes (2004). Differentiated products demand systems from a combination
of micro and macro data: The new car market. Journal of Political Economy, 112 (1), 68-105.

6.3.8 Berry and Pakes (2007)

Berry, Steven, and Ariel Pakes (2007). The pure characteristics demand model. International Economic Review, 48
(4), 1193-1225.

6.3.9 Brenkers and Verboven (2006)

Brenkers, Randy, and Frank Verboven (2006). Liberalizing a distribution system: The European car market. Journal
of the European Economic Association, 4 (1), 216-251.

6.3.10 Brunner, Heiss, Romahn, and Weiser (2017)

Brunner, Daniel, Florian Heiss, André Romahn, and Constantin Weiser (2017) Reliable estimation of random coeffi-
cient logit demand models. DICE Discussion Paper 267.

6.3.11 Cardell (1997)

Cardell, N. Scott (1997). Variance components structures for the extreme-value and logistic distributions with appli-
cation to models of heterogeneity. Econometric Theory, 13 (2), 185-213.

6.3.12 Chamberlain (1987)

Chamberlain, Gary (1987) Asymptotic efficiency in estimation with conditional moment restrictions. Journal of
Econometrics, 34 (3), 305-334.
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Working paper.
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Annals of Economics and Statistics, 34, 143-157.
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Hansen, Lars Peter (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50
(4), 1029-1054.

6.3.19 Heiss and Winschel (2008)

Heiss, Florian, and Viktor Winschel (2008). Likelihood approximation by numerical integration on sparse grids.
Journal of Econometrics, 144 (1), 62-80.

6.3.20 Hess, Train, and Polak (2004)

Hess, Stephane, Kenneth E. Train, and John W. Polak (2004). On the use of a Modified Latin Hypercube Sampling
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147-167.
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Lovell, Michael C. (1963). Seasonal adjustment of economic time series and multiple regression analysis. Journal of
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CHAPTER

SEVEN

LEGAL

Copyright 2021 Jeff Gortmaker and Christopher Conlon

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
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CHAPTER

EIGHT

CONTRIBUTING

Please use the GitHub issue tracker to report bugs or to request features. Contributions are welcome. Examples
include:

• Code optimizations.

• Documentation improvements.

• Alternate formulations that have been implemented in the literature but not in PyBLP.
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CHAPTER

NINE

TESTING

Testing is done with the tox automation tool, which runs a pytest-backed test suite in the tests/ directory.

9.1 Testing Requirements

In addition to the installation requirements for the package itself, running tests and building documentation requires
additional packages specified by the tests and docs extras in setup.py, along with any other explicitly specified
deps in tox.ini.

The full suite of tests also requires installation of the following software:

• Artleys Knitro version 10.3 or newer: testing optimization routines.

• MATLAB: comparing sparse grids with those created by the function nwspgr created by Florian Heiss and
Viktor Winschel, which must be included in a directory on the MATLAB path.

• R: simulating nested logit errors created by the package evd created by Alec Stephenson, which must be in-
stalled.

If software is not installed, its associated tests will be skipped. Additionally, some tests that require support for
extended precision will be skipped if on the platform running the tests, numpy.longdouble has the same precision
as numpy.float64. This tends to be the case on Windows.

9.2 Running Tests

Defined in tox.ini are environments that test the package under different python versions, check types, enforce
style guidelines, verify the integrity of the documentation, and release the package. First, tox should be installed on
top of an Anaconda installation. The following command can be run in the top-level pyblp directory to run all testing
environments:

tox

You can choose to run only one environment, such as the one that builds the documentation, with the -e flag:

tox -e docs

9.3 Test Organization

Fixtures, which are defined in tests.conftest, configure the testing environment and simulate problems accord-
ing to a range of specifications.
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Most BLP-specific tests in tests.test_blp verify properties about results obtained by solving the simulated
problems under various parameterizations. Examples include:

• Reasonable formulations of problems should give rise to estimated parameters that are close to their true values.

• Cosmetic changes such as the number of processes should not change estimates.

• Post-estimation outputs should satisfy certain properties.

• Optimization routines should behave as expected.

• Derivatives computed with finite differences should approach analytic derivatives.

Tests of generic utilities in tests.test_formulation, tests.test_integration, tests.
test_iteration, and tests.test_optimization verify that matrix formulation, integral approximation,
fixed point iteration, and nonlinear optimization all work as expected. Example include:

• Nonlinear formulas give rise to expected matrices and derivatives.

• Gauss-Hermite integrals are better approximated with quadrature based on Gauss-Hermite rules than with Monte
Carlo integration.

• To solve a fixed point iteration problem for which it was developed, SQUAREM requires fewer fixed point
evaluations than does simple iteration.

• All optimization routines manage to solve a well-known optimization problem under different parameterizations.
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CHAPTER

TEN

VERSION NOTES

These notes will only include major changes.

10.1 1.1

• Covariance restrictions

• Demographic-specific product availability

10.2 1.0

• Support matching smooth functions of micro means

• Optimal micro moments

• Support elimination of groups of products for second choices

• Micro data simulation

• Micro moment tutorials

10.3 0.13

• Overhauled micro moment API

• Product-specific demographics

• Passthrough calculations

• Added problem results methods to simulation results

• Profit Hessian computation

• Checks of pricing second order conditions

• Newton-based methods for computing equilibrium prices

• Large speedups for supply-side and micro moment derivatives

• Universal display for fixed point iteration progress

• Support adjusting for simulation error in moment covariances

267



PyBLP, Release 1.1.0

10.4 0.12

• Refactored micro moment API

• Custom micro moments

• Properly scale micro moment covariances

• Pickling support

10.5 0.11

• Elasticities and diversion ratios with respect to mean utility

• Willingness to pay calculations

10.6 0.10

• Simplify micro moment API

• Second choice or diversion micro moments

• Add share clipping to make fixed point more robust

• Report covariance matrix estimates in addition to Cholesky root

• Approximation to the pure characteristics model

• Add option to always use finite differences

10.7 0.9

• More control over matrices of instruments

• Split off fixed effect absorption into companion package PyHDFE

• Scrambled Halton and Modified Latin Hypercube Sampling (MLHS) integration

• Importance sampling

• Quantity dependent marginal costs

• Speed up various matrix construction routines

• Option to do initial GMM update at starting values

• Update BLP example data to better replicate original paper

• Lognormal random coefficients

• Removed outdated default parameter bounds

• Change default objective scaling for more comparable objective values across problem sizes

• Add post-estimation routines to simplify integration error comparison
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10.8 0.8

• Micro moments that match product and agent characteristic covariances

• Extended use of pseudo-inverses

• Added more information to error messages

• More flexible simulation interface

• Alternative way to simulate data with specified prices and shares

• Tests of overidentifying and model restrictions

• Report projected gradients and reduced Hessians

• Change objective gradient scaling

• Switch to a lower-triangular covariance matrix to fix a bug with off-diagonal parameters

10.9 0.7

• Support more fixed point and optimization solvers

• Hessian computation with finite differences

• Simplified interface for firm changes

• Construction of differentiation instruments

• Add collinearity checks

• Update notation and explanations

10.10 0.6

• Optimal instrument estimation

• Structured all results as classes

• Additional information in progress reports

• Parametric bootstrapping of post-estimation outputs

• Replaced all examples in the documentation with Jupyter notebooks

• Updated the instruments for the BLP example problem

• Improved support for multiple equation GMM

• Made concentrating out linear parameters optional

• Better support for larger nesting parameters

• Improved robustness to overflow
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10.11 0.5

• Estimation of nesting parameters

• Performance improvements for matrix algebra and matrix construction

• Support for Python 3.7

• Computation of reasonable default bounds on nonlinear parameters

• Additional information in progress updates

• Improved error handling and documentation

• Simplified multiprocessing interface

• Cancelled out delta in the nonlinear contraction to improve performance

• Additional example data and improvements to the example problems

• Cleaned up covariance estimation

• Added type annotations and overhauled the testing suite

10.12 0.4

• Estimation of a Logit benchmark model

• Support for fixing of all nonlinear parameters

• More efficient two-way fixed effect absorption

• Clustered standard errors

10.13 0.3

• Patsy- and SymPy-backed R-style formula API

• More informative errors and displays of information

• Absorption of arbitrary fixed effects

• Reduction of memory footprint

10.14 0.2

• Improved support for longdouble precision

• Custom ownership matrices

• New benchmarking statistics

• Supply-side gradient computation

• Improved configuration for the automobile example problem
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10.15 0.1

• Initial release
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p
pyblp.data, 239
pyblp.options, 236
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INDEX

A
AbsorptionError (class in pyblp.exceptions), 249
agent_data (pyblp.Simulation attribute), 220
agent_formulation (pyblp.Problem attribute), 158
agent_formulation (pyblp.Simulation attribute),

220
agent_ids (pyblp.Agents attribute), 232
Agents (class in pyblp), 232
agents (pyblp.Problem attribute), 158
agents (pyblp.Simulation attribute), 220
availability (pyblp.Agents attribute), 232

B
beta (pyblp.OptimizationProgress attribute), 120
beta (pyblp.ProblemResults attribute), 174
beta (pyblp.Simulation attribute), 221
beta_bounds (pyblp.OptimizationProgress attribute),

120
beta_bounds (pyblp.ProblemResults attribute), 175
beta_labels (pyblp.OptimizationProgress attribute),

120
beta_labels (pyblp.ProblemResults attribute), 175
beta_se (pyblp.ProblemResults attribute), 174
BLP_AGENTS_LOCATION (in module pyblp.data), 239
BLP_PRODUCTS_LOCATION (in module pyblp.data),

239
bootstrap() (pyblp.ProblemResults method), 197
bootstrapped_beta (pyblp.BootstrappedResults at-

tribute), 206
bootstrapped_delta (pyblp.BootstrappedResults

attribute), 206
bootstrapped_gamma (pyblp.BootstrappedResults

attribute), 206
bootstrapped_pi (pyblp.BootstrappedResults

attribute), 206
bootstrapped_prices (pyblp.BootstrappedResults

attribute), 206
bootstrapped_rho (pyblp.BootstrappedResults at-

tribute), 206
bootstrapped_shares (pyblp.BootstrappedResults

attribute), 206

bootstrapped_sigma (pyblp.BootstrappedResults
attribute), 206

BootstrappedResults (class in pyblp), 205
build_blp_instruments() (in module pyblp), 127
build_differentiation_instruments() (in

module pyblp), 133
build_id_data() (in module pyblp), 140
build_integration() (in module pyblp), 145
build_matrix() (in module pyblp), 123
build_ownership() (in module pyblp), 142

C
clipped_costs (pyblp.OptimizationProgress at-

tribute), 121
clipped_costs (pyblp.ProblemResults attribute), 176
clipped_shares (pyblp.OptimizationProgress

attribute), 121
clipped_shares (pyblp.ProblemResults attribute),

175
ClippedSharesError (class in pyblp.exceptions),

249
clustering_ids (pyblp.Products attribute), 231
collinear_atol (in module pyblp.options), 237
collinear_rtol (in module pyblp.options), 238
computation_time (pyblp.BootstrappedResults at-

tribute), 206
computation_time (py-

blp.ImportanceSamplingResults attribute),
213

computation_time (py-
blp.OptimalInstrumentResults attribute),
209

computation_time (pyblp.SimulationResults at-
tribute), 227

compute_agent_scores() (pyblp.ProblemResults
method), 203

compute_aggregate_elasticities() (py-
blp.ProblemResults method), 184

compute_approximate_prices() (py-
blp.ProblemResults method), 192

compute_consumer_surpluses() (py-
blp.ProblemResults method), 196
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compute_costs() (pyblp.ProblemResults method),
190

compute_delta() (pyblp.ProblemResults method),
190

compute_demand_hessians() (py-
blp.ProblemResults method), 185

compute_demand_jacobians() (py-
blp.ProblemResults method), 185

compute_diversion_ratios() (py-
blp.ProblemResults method), 186

compute_elasticities() (pyblp.ProblemResults
method), 184

compute_hhi() (pyblp.ProblemResults method), 194
compute_long_run_diversion_ratios() (py-

blp.ProblemResults method), 187
compute_markups() (pyblp.ProblemResults

method), 195
compute_micro_scores() (pyblp.ProblemResults

method), 202
compute_micro_values() (pyblp.ProblemResults

method), 201
compute_optimal_instruments() (py-

blp.ProblemResults method), 198
compute_passthrough() (pyblp.ProblemResults

method), 191
compute_prices() (pyblp.ProblemResults method),

192
compute_probabilities() (py-

blp.ProblemResults method), 188
compute_profit_hessians() (py-

blp.ProblemResults method), 186
compute_profits() (pyblp.ProblemResults

method), 195
compute_shares() (pyblp.ProblemResults method),
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contraction_evaluations (py-

blp.BootstrappedResults attribute), 207
contraction_evaluations (py-

blp.OptimalInstrumentResults attribute),
209

contraction_evaluations (py-
blp.OptimizationProgress attribute), 119

contraction_evaluations (py-
blp.ProblemResults attribute), 173

contraction_evaluations (py-
blp.SimulationResults attribute), 227

converged (pyblp.ProblemResults attribute), 172
costs (pyblp.SimulationResults attribute), 227
costs_type (pyblp.Problem attribute), 158
costs_type (pyblp.Simulation attribute), 221
CostsNumericalError (class in pyblp.exceptions),

246
CostsReversionError (class in pyblp.exceptions),

250

cumulative_contraction_evaluations
(pyblp.ProblemResults attribute), 173

cumulative_converged (pyblp.ProblemResults at-
tribute), 172

cumulative_fp_converged (py-
blp.ProblemResults attribute), 173

cumulative_fp_iterations (py-
blp.ProblemResults attribute), 173

cumulative_objective_evaluations (py-
blp.ProblemResults attribute), 173

cumulative_optimization_iterations
(pyblp.ProblemResults attribute), 172

cumulative_optimization_time (py-
blp.ProblemResults attribute), 172

cumulative_total_time (pyblp.ProblemResults
attribute), 172

D
D (pyblp.Problem attribute), 159
D (pyblp.Simulation attribute), 222
data_to_dict() (in module pyblp), 147
delta (pyblp.OptimizationProgress attribute), 121
delta (pyblp.ProblemResults attribute), 175
delta (pyblp.SimulationResults attribute), 227
DeltaConvergenceError (class in py-

blp.exceptions), 249
DeltaNumericalError (class in pyblp.exceptions),

246
DeltaReversionError (class in pyblp.exceptions),

250
demand_ids (pyblp.Products attribute), 230
demand_instruments (py-

blp.OptimalInstrumentResults attribute),
208

demand_shifter_formulation (py-
blp.OptimalInstrumentResults attribute),
208

demographics (pyblp.Agents attribute), 232
detect_micro_collinearity (in module py-

blp.options), 238
diagnostic_market_ids (py-

blp.ImportanceSamplingResults attribute),
213

digits (in module pyblp.options), 236
draws (pyblp.BootstrappedResults attribute), 206
draws (pyblp.ImportanceSamplingResults attribute),
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draws (pyblp.OptimalInstrumentResults attribute), 209
drop_product_fields (in module pyblp.options),

238
dtype (in module pyblp.options), 236

E
ED (pyblp.Problem attribute), 159
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ED (pyblp.Simulation attribute), 222
effective_draws (py-

blp.ImportanceSamplingResults attribute),
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effective_draws_for_skewness (py-
blp.ImportanceSamplingResults attribute),
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effective_draws_for_variance (py-
blp.ImportanceSamplingResults attribute),
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epsilon_scale (pyblp.Problem attribute), 158
epsilon_scale (pyblp.Simulation attribute), 221
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EquilibriumRealizationNumericalError
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ES (pyblp.Problem attribute), 159
ES (pyblp.Simulation attribute), 222
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expected_prices (pyblp.OptimalInstrumentResults

attribute), 209
expected_shares (pyblp.OptimalInstrumentResults

attribute), 209
expected_xi_by_theta_jacobian (py-

blp.OptimalInstrumentResults attribute),
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extract_diagonal_means() (py-
blp.ProblemResults method), 189

extract_diagonals() (pyblp.ProblemResults
method), 189

F
F (pyblp.Problem attribute), 159
F (pyblp.Simulation attribute), 222
finite_differences_epsilon (in module py-

blp.options), 237
firm_ids (pyblp.Products attribute), 230
FittedValuesInversionError (class in py-

blp.exceptions), 251
flush_output (in module pyblp.options), 236
Formulation (class in pyblp), 105
fp_converged (pyblp.BootstrappedResults attribute),

207
fp_converged (pyblp.OptimalInstrumentResults at-

tribute), 209
fp_converged (pyblp.OptimizationProgress at-

tribute), 119
fp_converged (pyblp.ProblemResults attribute), 173
fp_converged (pyblp.SimulationResults attribute),

227
fp_iterations (pyblp.BootstrappedResults at-

tribute), 207

fp_iterations (pyblp.OptimalInstrumentResults at-
tribute), 209

fp_iterations (pyblp.OptimizationProgress at-
tribute), 119

fp_iterations (pyblp.ProblemResults attribute), 173
fp_iterations (pyblp.SimulationResults attribute),

227

G
gamma (pyblp.OptimizationProgress attribute), 120
gamma (pyblp.ProblemResults attribute), 174
gamma (pyblp.Simulation attribute), 221
gamma_bounds (pyblp.OptimizationProgress at-

tribute), 120
gamma_bounds (pyblp.ProblemResults attribute), 175
gamma_labels (pyblp.OptimizationProgress at-

tribute), 120
gamma_labels (pyblp.ProblemResults attribute), 175
gamma_se (pyblp.ProblemResults attribute), 174
GenericNumericalError (class in py-

blp.exceptions), 246
GMMMomentCovariancesInversionError (class

in pyblp.exceptions), 252
GMMParameterCovariancesInversionError

(class in pyblp.exceptions), 252
gradient (pyblp.OptimizationProgress attribute), 122
gradient (pyblp.ProblemResults attribute), 177
GradientReversionError (class in py-

blp.exceptions), 250

H
H (pyblp.Problem attribute), 160
H (pyblp.Simulation attribute), 222
hessian (pyblp.ProblemResults attribute), 177
HessianEigenvaluesError (class in py-

blp.exceptions), 251

I
I (pyblp.Problem attribute), 159
I (pyblp.Simulation attribute), 222
importance_sampling() (pyblp.ProblemResults

method), 200
ImportanceSamplingProblem (class in pyblp),

215
ImportanceSamplingResults (class in pyblp),

212
Integration (class in pyblp), 108
integration (pyblp.Simulation attribute), 220
IntraFirmJacobianInversionError (class in

pyblp.exceptions), 251
InvalidMomentCovariancesError (class in py-

blp.exceptions), 246
InvalidParameterCovariancesError (class in

pyblp.exceptions), 246

Index 279



PyBLP, Release 1.1.0
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Iteration (class in pyblp), 111
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JacobianRealizationNumericalError (class

in pyblp.exceptions), 248

K
K1 (pyblp.Problem attribute), 159
K1 (pyblp.Simulation attribute), 222
K2 (pyblp.Problem attribute), 159
K2 (pyblp.Simulation attribute), 222
K3 (pyblp.Problem attribute), 159
K3 (pyblp.Simulation attribute), 222

L
last_results (pyblp.ProblemResults attribute), 172
LinearParameterCovariancesInversionError

(class in pyblp.exceptions), 251

M
market_ids (pyblp.Agents attribute), 232
market_ids (pyblp.Products attribute), 230
MC (pyblp.Problem attribute), 159
MC (pyblp.Simulation attribute), 222
MD (pyblp.Problem attribute), 159
MD (pyblp.Simulation attribute), 222
micro (pyblp.OptimizationProgress attribute), 121
micro (pyblp.ProblemResults attribute), 176
micro_by_theta_jacobian (py-

blp.OptimizationProgress attribute), 122
micro_by_theta_jacobian (py-

blp.ProblemResults attribute), 177
micro_computation_chunks (in module py-

blp.options), 238
micro_covariances (pyblp.ProblemResults at-

tribute), 176
micro_values (pyblp.OptimizationProgress at-

tribute), 121
micro_values (pyblp.ProblemResults attribute), 176
MicroDataset (class in pyblp), 168
MicroMoment (class in pyblp), 170
MicroMomentCovariancesNumericalError

(class in pyblp.exceptions), 247
MicroMomentsByThetaJacobianNumericalError

(class in pyblp.exceptions), 247
MicroMomentsByThetaJacobianReversionError

(class in pyblp.exceptions), 251
MicroMomentsNumericalError (class in py-

blp.exceptions), 247
MicroMomentsReversionError (class in py-

blp.exceptions), 250

MicroPart (class in pyblp), 169
MicroScoresNumericalError (class in py-

blp.exceptions), 248
moments (pyblp.ProblemResults attribute), 176
moments_jacobian (pyblp.ProblemResults at-

tribute), 176
MS (pyblp.Problem attribute), 159
MS (pyblp.Simulation attribute), 222
MultipleErrors (class in pyblp.exceptions), 245

N
N (pyblp.Problem attribute), 159
N (pyblp.Simulation attribute), 221
nesting_ids (pyblp.Products attribute), 231
NEVO_AGENTS_LOCATION (in module pyblp.data),

239
NEVO_PRODUCTS_LOCATION (in module pyblp.data),

239
nodes (pyblp.Agents attribute), 232
NonpositiveCostsError (class in py-

blp.exceptions), 246
NonpositiveSyntheticCostsError (class in py-

blp.exceptions), 246

O
objective (pyblp.OptimizationProgress attribute),

121
objective (pyblp.ProblemResults attribute), 177
objective_evaluations (pyblp.ProblemResults

attribute), 173
ObjectiveReversionError (class in py-

blp.exceptions), 250
omega (pyblp.OptimizationProgress attribute), 121
omega (pyblp.ProblemResults attribute), 176
omega (pyblp.Simulation attribute), 221
omega_by_theta_jacobian (py-

blp.OptimizationProgress attribute), 121
omega_by_theta_jacobian (py-

blp.ProblemResults attribute), 177
omega_fe (pyblp.ProblemResults attribute), 176
OmegaByThetaJacobianNumericalError (class

in pyblp.exceptions), 247
OmegaByThetaJacobianReversionError (class

in pyblp.exceptions), 250
OptimalInstrumentProblem (class in pyblp), 212
OptimalInstrumentResults (class in pyblp), 208
Optimization (class in pyblp), 115
optimization_iterations (py-

blp.ProblemResults attribute), 172
optimization_time (pyblp.ProblemResults at-

tribute), 172
OptimizationProgress (class in pyblp), 119
ownership (pyblp.Products attribute), 231
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P
parallel() (in module pyblp), 232
parameter_covariances (pyblp.ProblemResults

attribute), 173
parameters (pyblp.ProblemResults attribute), 173
PassthroughInversionError (class in py-

blp.exceptions), 251
PETRIN_AGENTS_LOCATION (in module pyblp.data),

239
PETRIN_COVARIANCES_LOCATION (in module py-

blp.data), 239
PETRIN_PRODUCTS_LOCATION (in module py-

blp.data), 239
PETRIN_VALUES_LOCATION (in module pyblp.data),

239
pi (pyblp.OptimizationProgress attribute), 119
pi (pyblp.ProblemResults attribute), 174
pi (pyblp.Simulation attribute), 221
pi_bounds (pyblp.OptimizationProgress attribute),

120
pi_bounds (pyblp.ProblemResults attribute), 175
pi_labels (pyblp.OptimizationProgress attribute),

120
pi_labels (pyblp.ProblemResults attribute), 175
pi_se (pyblp.ProblemResults attribute), 174
PostEstimationNumericalError (class in py-

blp.exceptions), 249
prices (pyblp.Products attribute), 231
Problem (class in pyblp), 152
problem (pyblp.OptimizationProgress attribute), 119
problem (pyblp.ProblemResults attribute), 172
problem_results (pyblp.BootstrappedResults

attribute), 206
problem_results (py-

blp.ImportanceSamplingResults attribute),
212

problem_results (pyblp.OptimalInstrumentResults
attribute), 208

ProblemResults (class in pyblp), 172
product_data (pyblp.Simulation attribute), 220
product_data (pyblp.SimulationResults attribute),

227
product_formulations (pyblp.Problem attribute),

158
product_formulations (pyblp.Simulation at-

tribute), 220
product_ids (pyblp.Products attribute), 231
Products (class in pyblp), 230
products (pyblp.Problem attribute), 158
products (pyblp.Simulation attribute), 220
profit_gradient_norms (pyblp.SimulationResults

attribute), 228
profit_gradients (pyblp.SimulationResults at-

tribute), 227

profit_hessian_eigenvalues (py-
blp.SimulationResults attribute), 228

profit_hessians (pyblp.SimulationResults at-
tribute), 228

ProfitHessianEigenvaluesError (class in py-
blp.exceptions), 251

projected_gradient (pyblp.OptimizationProgress
attribute), 122

projected_gradient (pyblp.ProblemResults
attribute), 177

projected_gradient_norm (py-
blp.OptimizationProgress attribute), 122

projected_gradient_norm (py-
blp.ProblemResults attribute), 177

psd_atol (in module pyblp.options), 238
psd_rtol (in module pyblp.options), 238
pseudo_inverses (in module pyblp.options), 237
pyblp.data (module), 239
pyblp.options (module), 236

R
rc_types (pyblp.Problem attribute), 158
rc_types (pyblp.Simulation attribute), 221
read_pickle() (in module pyblp), 152
reduced_hessian (pyblp.ProblemResults attribute),

177
reduced_hessian_eigenvalues (py-

blp.ProblemResults attribute), 177
replace_endogenous() (pyblp.Simulation

method), 223
replace_exogenous() (pyblp.Simulation method),

224
rho (pyblp.OptimizationProgress attribute), 119
rho (pyblp.ProblemResults attribute), 174
rho (pyblp.Simulation attribute), 221
rho_bounds (pyblp.OptimizationProgress attribute),

120
rho_bounds (pyblp.ProblemResults attribute), 175
rho_labels (pyblp.OptimizationProgress attribute),

120
rho_labels (pyblp.ProblemResults attribute), 175
rho_se (pyblp.ProblemResults attribute), 174
run_distance_test() (pyblp.ProblemResults

method), 181
run_hansen_test() (pyblp.ProblemResults

method), 180
run_lm_test() (pyblp.ProblemResults method), 182
run_wald_test() (pyblp.ProblemResults method),

182

S
sampled_agents (pyblp.ImportanceSamplingResults

attribute), 213
save_pickle() (in module pyblp), 152
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shares (pyblp.Products attribute), 231
SharesByXiJacobianInversionError (class in

pyblp.exceptions), 251
sigma (pyblp.OptimizationProgress attribute), 119
sigma (pyblp.ProblemResults attribute), 174
sigma (pyblp.Simulation attribute), 221
sigma_bounds (pyblp.OptimizationProgress at-

tribute), 120
sigma_bounds (pyblp.ProblemResults attribute), 174
sigma_labels (pyblp.OptimizationProgress at-

tribute), 120
sigma_labels (pyblp.ProblemResults attribute), 175
sigma_se (pyblp.ProblemResults attribute), 174
sigma_squared (pyblp.OptimizationProgress at-

tribute), 119
sigma_squared (pyblp.ProblemResults attribute), 174
sigma_squared_se (pyblp.ProblemResults at-

tribute), 174
simulate_micro_data() (pyblp.ProblemResults

method), 204
Simulation (class in pyblp), 215
simulation (pyblp.SimulationResults attribute), 227
simulation_covariances (pyblp.ProblemResults

attribute), 176
SimulationResults (class in pyblp), 226
singular_tol (in module pyblp.options), 237
solve() (pyblp.Problem method), 160
step (pyblp.ProblemResults attribute), 172
supply_ids (pyblp.Products attribute), 230
supply_instruments (py-

blp.OptimalInstrumentResults attribute),
208

supply_shifter_formulation (py-
blp.OptimalInstrumentResults attribute),
208

SyntheticCostsNumericalError (class in py-
blp.exceptions), 248

SyntheticDeltaConvergenceError (class in py-
blp.exceptions), 249

SyntheticDeltaNumericalError (class in py-
blp.exceptions), 248

SyntheticMicroDataNumericalError (class in
pyblp.exceptions), 248

SyntheticMicroMomentsNumericalError
(class in pyblp.exceptions), 248

SyntheticPricesConvergenceError (class in
pyblp.exceptions), 249

SyntheticPricesNumericalError (class in py-
blp.exceptions), 247

SyntheticSharesNumericalError (class in py-
blp.exceptions), 248

T
T (pyblp.Problem attribute), 159

T (pyblp.Simulation attribute), 221
theta (pyblp.OptimizationProgress attribute), 119
theta (pyblp.ProblemResults attribute), 173
theta_labels (pyblp.OptimizationProgress at-

tribute), 120
theta_labels (pyblp.ProblemResults attribute), 175
ThetaConvergenceError (class in py-

blp.exceptions), 249
tilde_costs (pyblp.OptimizationProgress attribute),

121
tilde_costs (pyblp.ProblemResults attribute), 176
to_dict() (pyblp.BootstrappedResults method), 207
to_dict() (pyblp.ImportanceSamplingResults

method), 214
to_dict() (pyblp.OptimalInstrumentResults method),

210
to_dict() (pyblp.ProblemResults method), 180
to_dict() (pyblp.SimulationResults method), 229
to_pickle() (pyblp.BootstrappedResults method),

207
to_pickle() (pyblp.ImportanceSamplingResults

method), 214
to_pickle() (pyblp.OptimalInstrumentResults

method), 210
to_pickle() (pyblp.ProblemResults method), 179
to_pickle() (pyblp.SimulationResults method), 228
to_problem() (pyblp.ImportanceSamplingResults

method), 214
to_problem() (pyblp.OptimalInstrumentResults

method), 210
to_problem() (pyblp.SimulationResults method), 229
total_time (pyblp.ProblemResults attribute), 172

U
unique_agent_ids (pyblp.Problem attribute), 158
unique_agent_ids (pyblp.Simulation attribute), 221
unique_firm_ids (pyblp.Problem attribute), 158
unique_firm_ids (pyblp.Simulation attribute), 220
unique_market_ids (pyblp.Problem attribute), 158
unique_market_ids (pyblp.Simulation attribute),

220
unique_nesting_ids (pyblp.Problem attribute),

158
unique_nesting_ids (pyblp.Simulation attribute),

220
unique_product_ids (pyblp.Problem attribute),

158
unique_product_ids (pyblp.Simulation attribute),

220
updated_W (pyblp.ProblemResults attribute), 178

V
verbose (in module pyblp.options), 236
verbose_output (in module pyblp.options), 236
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verbose_tracebacks (in module pyblp.options),
236

W
W (pyblp.OptimizationProgress attribute), 122
W (pyblp.ProblemResults attribute), 177
weight_sums (pyblp.ImportanceSamplingResults at-

tribute), 213
weights (pyblp.Agents attribute), 232
weights_tol (in module pyblp.options), 237

X
X1 (pyblp.Products attribute), 231
X2 (pyblp.Products attribute), 231
X3 (pyblp.Products attribute), 231
xi (pyblp.OptimizationProgress attribute), 121
xi (pyblp.ProblemResults attribute), 176
xi (pyblp.Simulation attribute), 221
xi_by_theta_jacobian (py-

blp.OptimizationProgress attribute), 121
xi_by_theta_jacobian (pyblp.ProblemResults at-

tribute), 177
xi_fe (pyblp.ProblemResults attribute), 176
XiByThetaJacobianNumericalError (class in

pyblp.exceptions), 247
XiByThetaJacobianReversionError (class in

pyblp.exceptions), 250

Z
ZC (pyblp.Products attribute), 231
ZD (pyblp.Products attribute), 231
ZS (pyblp.Products attribute), 231
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